INTERFACE DESIGN FOR SIMULATIONS

Louis Weitzman
Mark Rosenstein
Jim Hollan

NPRDC-UCSD Intelligent Systems Group
Institute for Cognitive Science C-015
University of California, San Diego 92098

Abstract

New computer-based technologies coupled with recent advances from artificial intel-
ligence and cognitive science enable the exploration of new forms of intelligent graphical
interfaces. In order to facilitate the construction of these interfaces, powerful software
tools (Sheil, 1983) are required. The Graphics Editor we discuss in this paper is a tool
designed to assist in the construction of graphical interfaces to simulations and real-time
systems. It was developed as part of a larger research effort concerned with the con-
struction of intelligent computer-assisted instructional systems (Hollan, Hutchins, &
Weitzman, 1984). The purpose of this paper is to provide a brief introduction to the
editor, describe how it is useful for building interfaces to simulations and real-time sys-
tems, and discuss the advantages of an object-oriented approach to graphical interface
design.

Introduction

In this paper we discuss an object-oriented Graphics Editor (Figure 1)
designed to facilitate the implementation of interfaces to simulations and
real-time systems. This editor is in use in a number of our research pro-
jects. It is also being used by instructors building and augmenting the
interface to a propulsion simulation (Steamer). An overview of Steamer is
presented in Hollan, Hutchins, and Weitzman (1984). During the last few
years the Editor has been used to construct hundreds of graphical
diagrams. A diagram provides an interactive graphical mechanism for moni-
toring and changing the state of an underlying simulation. In Steamer,
diagrams allow students and instructors to view and manipulate a steam
propulsion simulation at a variety of conceptual levels. The current Stea-
mer system provides approximately one hundred color views specific to the
propulsion domain, which range from high-level abstract representations of
the plant like the Basic Steam Cycle (Figure 2), to gauge panels depicting
sets of gauges quite like those found on a ship (Figure 3).

The opinions expressed in this paper are those of the authors, are not
official, and do not necessarily reflect the views of the Navy Department.



The diagrammatic interfaces created with the Graphics Editor function
in two ways. First, the states of variables in a simulation model or real-
time interface are reflected graphically by objects in the diagram. Thus,
the fluctuating operational status of particular components of a simulation
can be depicted by changes in color or other graphical features of their
iconic representations. In Steamer diagrams a pump’s state is depicted as
green if it is operating and red if it is off. The second function provided by
the graphical interface is to permit control of the underlying simulation or
real-time interface by allowing a user to point to components with a mouse
and change their state by clicking on them. In Steamer one can chanke the
level of a tank by simply pointing to a new position for the water level and
clicking.

Steamer views also attempt to make the causal topology of the propul-
sion system more apparent by showing (via animation) the directions and
rates of flow between components. In addition, diagrams are often con-
structed to reveal aspects of a system which assist in the development of
understandings of its operation. For example, some diagrams focus directly
on concepts such as feedback, while others provide simplified views of sys-
tems highlighting the functioning of important components and illustrating
the principles underlying the system’s operation.

The Graphics Editor

The Graphics Editor has been used to create the existing set of Stea-
mer diagrams as well as diagrams in a number of other areas. It provides
many functions commonly available in computer-aided design systems. One
can save and restore diagrams from files, mark the elements of a diagram
(individually, by type, within an area, etc.), and edit those marked ele-
ments (move, copy, delete, etc.). A grid facility is provided to assist in
accurately positioning icons within a diagram. The multi-paned menu inter-
face to the editor is shown in Figure 4.

The Graphics Editor has a number of unique features. It is these
features and the object-oriented method of implementation that we focus
on in this paper. A diagram is built up from a standard set of intelligent
objects, or scons. The available icons consist of basic graphical primitives
(rectangles, circles, lines, ete.), various indicators (dials, columns, graphs,
etc.), and a large set of icons related to the propulsion domain (a variety of
pumps, valves, pipes, and electrical components). Some of these icons are
depicted in the Sampler Diagram in Figure 5. The facility also exists to
create new graphical objects from this existing set.

In the process of creating a diagram, the major actions are pointing and
selecting. For purposes of demonstration, consider creating a dial for the
Steamer diagram, Boiler Console 1B (figure 3). The user would eclick on
dial in a menu on the black and white screen. The cursor would then be
taken to the color screen where one would position and size the dial.

358




Immediately, a dial with many characteristics defaulted (e.g. its color, its
minimum and maximum values, the number of divisions on its scale, etc.)
would be created (Figure 6a). Then through a process of incremental
refinement one critiques that dial by changing various parameters (Figure
6b) until it has all the intended graphical properties (Figure 6¢). The goal
here is to allow a user of the editor to think about the objects of an inter-
face in natural terms.

Object-Oriented Interfaces

The process of constructing diagrams with the Graphies Editor creates
a program written in LISP. This code contains both the specification of the
icons in the diagrams and how they interact with the simulation. We have
designed and implemented the Graphics Editor in the object-oriented Fla-
vors system of Zetalisp (Weinreb & Moon, 1981). The object-oriented style
of programming facilitates design by providing abstraction mechanisms
which allow the packaging of implementation details both hierarchically
and through generic communication facilities. The resulting code is easier
to read, understand, and maintain. In addition, this style of programming
seems particularly suitable as a basis for building interactive graphical
interfaces since one commonly wants a number of particular instantiations
of the same general class of object.

Objects are entities comprised of other simpler entities. Each entity
contributes the ability to handle various classes of messages. The concept
of objects originated with the Simula language (Dahl & Nygaard, 1966) and
was the basis of the Smalltalk language (Goldberg & Robson, 1983). In the
Zetalisp programming environment, these abstract objects are known as
Flavors. Each type of icon, such as a dial, is a flavor. Each particular icon
is an instance of its respective icon flavor. A flavor provides a template for
storage of instance variables and a set of contracts or messages each
instance is capable of understanding. An instance allocates storage for its
instance variables and is the object to which messages are sent.

One important abstraction technique of the flavors system can be
described in terms of contracts between callers and objects. Each icon par-
ticipates in a contract to display a value. This contract relieves the caller
of any responsibility for the mechanism of how the value is shown. Thus,
when a caller tells an icon to show the value 7, it must carry out the
appropriate action. A tank must position its water level to show this value,
a dial must adjust its needle to the appropriate point, and a pipe must
show the appropriate flow rate. Thus the caller can be very simple. It just
tells the icon to show 7, and the complexity of how the showing is actually
implemented is hidden within the icon.

Requiring icons to fulfill these contracts not only allows the callers to
become clearer, but also allows the generalization of contracts into classes
of contracts. For instance, many of the icons, like the dial, can show any

359




value between a minimum and maximum value. We have written a fairly
general continuous contract that includes allocation for a current value and
a minimum and maximum value that the icon can attain. It also provides
ability to constrain a new value to lie between these limits. The individual
icon’s job is then to specify how to display legal values.

Generic facilities such as the continuous property mentioned above are
implemented through Mizins. Mixins are just flavors that are mixed into
icons instead of being instantiated themselves. The dial, for example, inher-
its many of its properties from a set of mixins. It is composed of a dial
component which supplies dial specific information and eight other mixins
which provide the additional templates and messages required (Figure 7).

One of a dial’s more important mixins is the Rectangular mixin which
provides the strategies for dealing with rectangular regions on the color
screen. It gives the icon a bounding rectangle and contracts for dealing
with it. Consider placing a new icon on the color screen. The editor
creates a new instance of the icon type and sends that icon the message
Setup-Position. Here, the contract is for the cursor to move to the color
screen where the icon is to locate itself. For most icons, the user would
click at the starting position and pull out a rectangle to graphically delimit
the region for the icon. Each icon could do this individually, but clearly
this is a generic function. The Rectangular mixin provides this functional-
ity along with Erase and Move messages. The Erase message clears the
icon’s bounding rectangle, while the Move message changes the icon’s
screen position. An icon can, if necessary, override the default action that
any mixin provides. These object oriented programming techniques make
possible a very powerful generic interface which has proven to be exceed-
ingly useful in building simulation interfaces.

Tapping Icons into a Simulation

The process of associating an icon with a variable in a simulation is
known as tapping. To support the two way interface mechanism, icons
must not only have the ability to reflect the state of variables but also
must provide a means of changing the value of variables. The Tap mixin
provides this functionality. Clicking on Tap in the Graphics Editor display
pops up a menu for critiquing the tapping parameters of a selected icon.
This menu allows the specification of the variable whose value will be moni-
tored by the icon, the probe variable, and the variable that will be altered
by interacting with the icon, the set variable. Figure 8a shows the pop-up
menu for tapping a dial. Notice that a user has indicated this dial is to
probe the variable DB2C and set the variable EB2C.

The tapping mechanism allows the designer to specify a mapping from
the math model’s representation to one that is closer to the way a person
would talk about the component’s state. For example, in Steamer a rotary
pump can be in a secured, operating, or warmup state. In the

360




mathematical model, these states are represented by the values 0, 1, or 2,
respectively. The designer can specify an automatic mapping between the
math model values and the more easily understood representation. Figure
8b shows the pop-up menu for tapping a rotary pump. Notice that a user
has clicked on secured-warmup-operating in the tap mapping line of the
menu. Facilities exist for adding additional mappings for icons.

In the simplest case of tapping, there is a variable in the math model
which refects the characteristic we want an icon to depict. In this case the
icon is tapped to that variable by entering the variable name in the tapping
menu. Sometimes, however, there is no specific variable in a math model
which reflects the characteristic we want the icon to depict. In this case,
one might decide to add code directly to the math model to provide a
representation of the desired characteristic. This is a solution, but not
necessarily the optimal one. Since the expertise in building a math model is
not necessarily related to the ability to design diagrams to represent the
system, a diagram builder might corrupt the math model used by all
diagrams.

The mechanism Steamer provides is called a Model Augment. It is a set
of variables and a function. The augment is associated with a diagram and
its function is run along with the math model when the diagram is being
viewed. Often, a model augment is used to derive values for new variables
based on existing ones in the math model. Just as with variables in the
math model, icons can tap into these model augment variables. In Stea-
mer, pipes are often tapped to variables in a model augment which calcu-
late flow based on existing variables, such as valve and pump states.
Through the use of model augments, a simulation can be enhanced where it
is inadequate, complex tapping code can be more conveniently written, and
stand-alone simulations can be implemented. The tapping options are sum-
marized in Figure 9.

Summary

The Graphics Editor is a generic tool for constructing dynamic views
and interfacing them to dynamic processes. These processes can either be
mathematical simulations, as in Steamer, or real-time systems. Figure 10
shows a real-time interface to Unix running on a Vax 11/780. It graphi-
cally depicts system load, paging activity, and other dynamic aspects of the
operating system. We have also found the editor to be valuable in assisting
us in the development of simulation models. Numerous model augments
for Steamer, small simulations in themselves, were developed, tested, and
debugged with the aid of the Graphics Editor. Making the normally invisi-
ble simulation more visible allows for a better understanding of the under-
lying processes for students and interface designers alike.

The quick prototyping of interfaces and their subsequent modification
with the Graphics Editor make interface design easier, more flexible, and

361




doable by computer naive individuals. In fact, most of the diagrams in
Steamer have been created or refined by propulsion system experts with no
previous computer training. Through use of the Graphics Editor we have
been able to provide non-programming domain experts with the capability
to create interactive inspectable interfaces.

We are currently in the process of building other tools to assist in the
construction of graphical interfaces. In one effort we are building an Icon
Editor to facilitate construction of new icons. This editor is intended to
allow a nonprogrammer to construct new graphical icons and to specify
new behaviors for them. This should greatly expand the range of domains
in which the Graphics Editor can be used. In another project we are build-
ing a system to assist in the process of graphical design. This system,
Designer, will be able to critique diagrams in terms of graphic design princi-
ples, enforce consistent design specifications across diagrams, and help a
user explore design alternatives.

References

Dahl, O-J., & Nygaard, K. (1966). Simula - An Algol-based simulation
language. Communications of the ACM, 9 (9), 671-678.

Goldberg, A., & Robson, D. (1983). Smalltalk-80: The Language and Its
Implementation,_ Addison-Wesley, Reading, Mass.

Hollan, J. D. (1984). Intelligent Object-Based Graphical Interfaces, 293-297
in G. Salvendy (Ed.) Human-Computer Interaction, Elsevier, Amster-
dam.

Hollan, J. D., Hutchins, E. L., & Weitzman, L. (1984). STEAMER: An
Interactive Inspectable Simulation-Based Training System. Al Maga-
zine, 5 (2), 15-27.

Hollan, J. D., Hutchins, E. L., Rosenstein, M., & Weitzman, L. (1984).
Tools for Graphical Interface Design, Combining Human and Artificial
Intelligence: A New Frontier in Human Factors, Proceedings from the
Human Factors Society, New York, November 15, 1984.

Sheil, B. (1983). Power tools for programmers. Datamation, 29, 131-144.

Weinreb, D., & Moon, D. (1981). Lisp Machine Manual, Symbolics, Inc.,
Cambridge, Massachusetts.




Figure 1. Typical
Graphics Editor
configuration.

Figure 2. Abstract,
high level depiction of
the Basic Steam Cycle.

363




THRLEE

Figure 3. Boiler Con-

sole 1b.

w

oo

fr oot 1% £4TT T
zomziecs

Pt

Vamar

Graphics

4.
Editor command pane.

Figure




Figure 5. Sampler
Diagram.

DIAL CRITIQUE

Figure 6. Critiquing a
dial. a). The default
dial. b). Dial after cri-
tiquing dial’s range. ¢).
Completed dial includ-
ing label, units, and face
color.

365




SQUARE-ASPECT-RATIO-MIXIN

INSTANCE VARIABLES:

BASIC-ICON

INSTANCE VARIABLES:
diagram

GAGE-MIXIN

INSTANCE VARIABLES:
face-color

1abel ol

METHODS:
:aspect-ratio

METHODS:
set

tapped?

sTecompuie- derived- parameters
:modify-mix

:change-flavor

rermake-form

:rake-plist
iget-component-iavors
:get-all-instance-variables

METHODS:
setup-label
:befc

dertved

label-position

ties
tic-labels-color
tic-labels-font
units-color
units-font
units-string

:before
:things-to-save

CONTINUOUS-MIXIN

INSTANCE VARIABLES:
ue

minr-value

max-value

fractional-change-to-show
range

‘constrair-value

ibefore :recompute-derived- parameters

:things-to-save

RECTANGULAR-MIXIN

INSTANCE VARIABLES:
abersiring

ring

labelorientation

position

label-font

METHODS:
ssetup-color

ssetup-label
:after :reflect
afler idraw

:before :recompute-dertved- parameters

:things-to-save

DIAL

INSTANCE VARIABLES: METHODS:
arc-start

aro-end

needie-color

radius

redline-value

NO-CENTER-LABEL-MKXIN

INSTANCE VARIABLES: METHODS:
:legal-label-positions

DISPLAY-MIXIN
INSTANCE VARIABLES: METHODS:
Ilocations

TAP-MIXIN
INSTANGCE VARIABLES: METHODS:
tap-! ‘tapped?

Figure 7. The instance
variables and methods
of mixins which com-
bine to form a dial.

366




" Figure 8. Tapping
menus. a). Tapping a
dial to variables in the
math model. b). Tap-

ping a rotary pump

using a variable
transformation map-
ping.

MODEL pre-smare AUGMENT

(Value = 1)
PIPE-FLOW
(when (and
VALVE-STATE (= pump-state 1)
(Value = T) (= valve-state t))

DIAL-STARTE
(Value = 7)

(setq pipe=flow

@ - Secured
1 - Operate Nil = Close
2 - Warmup T = Open

Figure 9. Summary of
tapping mechanisms.

PP PIPE

367




Figure 10. Real time
interface to an operat-
ing system.

368




