
The HITS Icon Editor

The Specification of Graphic Behavior Without Coding

Mark Rosenstein
rosenstein@mcc.com

Louis Weitzman
weitzman@mcc.com

Human Interface Laboratory, MCC
3500 West Balcones Center Drive
Austin, TX 78759

Abstract

The Icon Editor is a platform for exploring the construction
of dynamic graphical icons and the techniques for relating
those entities to an application. The research goals of this
work are to discover new techniques for the graphical
specification of behavior and to develop a foundation for the
connection of an application to an interface. The broader
VlSlOn is a framework supporting a series of
knowledge-based tools to aid an interface designer in
building interfaces without coding.

Introduction

A significant portion of the effort expended in the
construction of a computer system is in the design of its
graphical interface. The appearance and functionality of this
interface can critically affect the useablity and the overall
aesthetics of the program. These issues are being addressed
by The Human Interface Tool Suite (HITS), an integrated
design environment being developed in the Human Interface
Laboratory of MCC. The Icon Editor, a HITS tool, is a
platform for exploring the construction of dynamic graphical
icons and the techniques for relating those entities to an
application.

HITS contains a cascade of facilities concerned with the
graphics incorporated within the interface. The suite of
graphic programs includes a tool, the Graphics Editor [11],
to allow domain experts to build iconic interfaces. These
interfaces are the views that monitor and control the
application. Another tool, the HITS Icon Editor, allows the
design and creation of new icons to be used in these
interfaces. Integrated with the Icon Editor and Graphics
Editor is Designer, a set of tools and design knowledge
which interactively analyzes, advises, and supports the
selection of alternatives to the graphical presentations
generated by these tools.

From both a research methodology and practical perspective,
tools provide greater leverage than one of a kind
implementations. Therefore, our effort is focused on the
development of tools to further the work within our lab.
Tools allow a community of users to develop and share in
expanding resources, e.g., libraries of icons, that can be
used across multiple projects and domains. While embodying
the interface constraints and knowledge of their initial

0073-1129/90/0000/0523$01.00 © 1990 IEEE 523

design, tools are also an enabling media allowing the
creation of artifacts beyond those imagined by the tools'
designers.

Interfaces constructed with HITS are targeted toward
knowledge based applications. As computer systems move
from mere calculation machines to true collaborators, both
applications and interfaces must maintain representations of
their structure and actions. Our tools aim to build next
generation interfaces having effective graphical
presentations, advising, and natural language interactions.
All of these are doomed from the onset unless there are
representations over which they can perform computations.
The implication is that the dynamic icons must have explicit
representations. Currently icons and behaviors use an object
oriented paradigm with full multiple inheritance,
differentiating classes and instances. An ongoing effort is to
move these objects to a frame based system, where we can
take advantage of constraints as a more expressive media
for the relations among these entities.

We have developed a perspective that categorizes the task
of interface design into three levels. One characterization of
these levels is that they distinguish the generality of the
task being executed.

The least generality is afforded the end user performing the
domain task. For this user, the interface must help solve
the problems of the application. This might be a point of
sale terminal, a library reference request system, the
operating console of a power plant, or interfaces to systems
we have yet to imagine. This interface must support the
task by taking advantage of the skills of its operators and
compensating for the operators' shortcomings. This is the
output of HITS tools like the Graphics Editor.

The next level involves the design of the end user interface.
This design must include all the perspectives needed to
support the task. The designer knows the task and how the
end user will likely perform it. From this user centered
view, the interface designer must build the interface from a
set of pre-existing components and connect the interface to
the application. The Graphics Editor is targeted at this level
of user.

The last level provides the most general control by building
and specifying the components available to the interface
builder. The component designer must anticipate the need
for the icons and construct them so that they can be placed

I~

· : 1,. • ., !con

Icon: lnlc l•r

Icon Icon Llbrarl•• Other
ln1t. At.tnbYt... l: Prinit i ve I c 2: NIL

~~b·l~~r.~ ~t::~:'·
Ora~.o~ Pr<ot.otypc lh:chnt l• I

Reorder !lire

ii:~':±"''"""-------.:-ty=:p,:- ff~~~leon Copy
Clc•r Find Undelete Or.w
Hi~hlight. Mite Ocfeult. Oucrib1
All Uet. lne~>t~ct

Nom<

Hove
(dit
Shape
Rot..t.c
Rctltct.

Menu Test
Color
Top
Hi•c

Grid
Ora.,.. Point.
Show Oiegonal
Sin T -Squa~

llourubry OUTLIJ'IE-COI..OR I<Map STRTIC-COLOR (:UHITE•:UHITE) 1 5259
SIZE liH16P STAT IC-SIZE ((9.4 IL1158ril0 04) .. (9. 4
LOCRTiotl I<Map STRTIC-LOCATION ((IL32569eB2 9 . 475
VISIBILITY I<Kap STRTIC- VISIBILITY (: UISIBLE .. :VISIB
COLOR l<,.,op ST ATIC-COLOR (: BLRCX•:BlACk) 1 5259

h1dlutor OUTLlJ'IE- COLOR 1<1'1•p STATIC- COLOR (: WHITE• :UHITE) 15259
SIZE I <M• p t1UNERIC-li11EAR- SIZE (lii•(B. B25998eB
LOCATtOtl ll<lhop STATIC-lOCnTION ((9.3375 IL4875)•(
VISIBILitY ~<11•D STATIC- VISIBILI TY (:VISI BLE .. :VtSIB
COLOR 1 <11•P STAT I C-COLOR (:BLUE•:BLUE) 152595 1i1

Attrlbut••
VALUE <COI'Ipo•e < hullc•to~ SIZE» T C 11
IMOICATOI:-CDlOII <COf'lpo•e <t.• .. lc•t•~ COLOR» T C 11

Figure 1. The HITS Icon Editor

in future interfaces. For instance, the overall graphical style
or natural language lexicon used as input for a product line
would be specified at this level. This is the level of
abstraction a user of the Icon Editor must consider.

It is possible that one person may fill these multiple roles,
but different classes of knowledge must be utilized to

successfully complete each task. These different levels
provide discrete points on a continuum of control and
specification. One can easily generate tools that fall between
these levels. By placing more constraints on the interface
designer's tool, the flexibility of that tool decreases. These
constraints can be imposed in a number of ways: by limiting
the choice of icons available, enforcing relationships
between elements, and constraining the actions of the tool.
For instance, the Graphics Editor allows the construction of
an interface from available libraries of icons. This may
provide too much freedom for a company that wishes to
maintain consistency throughout its product line. The
company could specialize the Graphics Editor to become a
product interface design tool. This tool would provide the
standard components that the company builds into its
machines and embody the company's style and design rules.

This paper discusses the specification of dynamic icons for
use in an interface. Considered here are both a
conceptualization for building appearance and behavior and
the realization of these ideas in a prototype. In order to
specify the behaviors of these new icons, this work
generalizes the notion of tapping, the process of relating an
interface object to its application. The tapping mechanism
supports a two-way communication between the interface
and the application. Not only do the icons monitor their
application state, but they can also modify it via mouse
input. This representation often involves* a transformation of
values between application and graphical states. Considered
here are related efforts, the theoretical basis of our work,
the current implementation, some examples of constructing
icons, and finally, our future directions.

524

Related Work

We have seen the increased commercial availability of tools
that allow a user to construct the appearance of an icon
[e.g., Macintosh interfaces and Steamer graphics]. What has
been lacking in all but a few cases has been the ability to
specify the behavior for these icons. Mentioned here are a
number of related research efforts that allow users to
specify interface behavior without programming. Whether
the technique be programming by example, visual
programming, or some other technique, the common goal is
to provide a tool that frees the designer from having to
write code. One factor that distinguishes these approaches
is the domain in which the system is used. Each domain
places strict requirements on the types of behaviors that are
needed. A taxonomy of systems that use these techniques is
provided in [8].

In programming by example the final result is specified
through examples presented to the system. The system
infers what actions to take from these examples. This
technique has been applied in a variety of domains,
including interface design (Myers' Peridot [9]) and
education (Laura Gould's Programming by Rehearsal [3]).

Peridot creates user interfaces by having the designer
demonstrate to the system how the interface should look
and feel. This interaction generates code that can then be
executed. The technique to generate this code is automatic
inferencing, simple condition-action rules that help the
system guess what the designer's intentions are. These rules
are used in the specification of the behaviors that the
elements take and in their presentation on the screen. The
system supports behaviors for building a user interface
which includes menus, scroll-bars, and light buttons.

Programming by Rehearsal does not use inferencing but
allows the user to specify behavior by example. Through the
use of the theater metaphor, productions are created with

performers carrying out specific tasks. These performers rely
heavily on predefined actions. Each action is associated with
a specific predefined cue. The interactions of the performers
in a production are defined mostly, but not exclusively, by
having the system watch the designer perform the actions.
A nice feature of systems that use programming by example
is that everything is visible, and the designer of the
interface is always thinking concretely.

Visual Programming allows the specification of programs
through the use of graphics. Earning's further work with
Thinglab [1] is a very good example of using graphics to
visually program constraints. Constraints are specified by
hooking up objects and then running them to get their new
combined behaviors. These objects are the building blocks of
the system. For detailed networks, however, the use of
graphics becomes questionable because of the complexity it
introduces in the representation with which the designer
must interact.

A different approach, one more similar to ours, is taken in
Foley's Process Visualization System [2]. Instead of
specifically laying out the behaviorial constraints of a new
icon or stepping through an example interaction, this
approach provides a mechanism to modify the specific
attributes of the primitives. These attributes change as they
reflect an underlying dynamic process. This external process
drives the appearance of the interface. It is the constraints
on the state of the variables within the external process
that affects the behavior of the new icon. Binding to the
process occurs by connecting a portion of an item in the
view and a process variable from a process library or data
dictionary. The data dictionary contains the values that can
be monitored. A major difference with this system and ours
is that we restrict the ability to modify attributes in the
final presentation. The icon builder specifies what can be
modified, while it is the view builder, not necessarily the
same person, who connects those attributes in the specific
instance. By encapsulating this new behavior, we build an
icon that will have a consistent presentation for future
views.

Basis of the Icon Editor

A fundamental tenet of our system is that aspects of the
application need to be viewed and manipulated. The
graphics tools of HITS provide for this interaction by
converting application state into graphic behaviors. An icon
provides a language for this conversion by allowing an
interface designer to specify displayable and modifiable
aspects of the application. These characteristics are
communicated by graphical characteristics controlled by an
icon's attributes. A crucial task is to specify these
attributes. With a foundation of primitive icons containing
predefined attributes, new icons with new attributes can be
created to be recombined into more complex icons.

The creation of an icon consists of four major steps. The
first step specifies the appearance of the icon. This involves
placing and shaping instances of· existing icons. In the
second step, attributes of these instances that will display
dynamic values are modified, to identify their input type. In
the third step, new attributes for the new icon are created.
The final step completes the process by specifying how the
new attributes control the characteristics of the existing

525

icon's attributes. Upon completion, instances of the new
icon can be immediately used for testing, building views, or
as components of other icons.

In the remainder of this section, we will discuss the Icon
Editor's support for each of these steps: 1) primitive icons,
the components used in creating a new icon, 2) attributes,
the displayable characteristics of an icon that can be
modified dynamically, 3) transformation maps, the objects
that convert application values and user input to graphic
values, 4) constraints, the methodology to propagate input to
existing primitives' attributes, and 5) typing, the use of
types to assist in the construction of the new icons.

Primitives

The basic mechanism for creating a new icon starts with
the composition of icons from previously defined icon
libraries. The working set of libraries is specified by the
user and includes predefined libraries and libraries created
through previous use of the Icon Editor. The most basic
library is a set of hand-coded icons currently composed of
rectangles, triangles, circles, arcs, lines, splines, text, and
bitmap images. User defined libraries from the Icon Editor
are generally organized by type, eg., button icons, or by
project. The icon under construction is itself placed in a
library indicated by the status line at the top of the Icon
Editor frame.

Composition of these components provides the structure for
the new icon. An icon selected from a library is positioned
and sized on the display screen. The appearance of the new
icon is then the sum of these component icons.

Attributes of Primitives

Attributes are the controllable characteristics of an icon.
The modification of these characteristics create the
interactive and dynamic behavior of the icons. Each icon
maintains the graphic attributes necessary to present itself.
As a minimum, every icon includes the attributes of color,
location, and visibility. The color attribute affects the color
in which the icon will be drawn, the location attribute
affects where the primitive will be drawn, and the visibility
attribute affects whether a primitive will be drawn at all.
Icons that enclose an area (e.g., rectangles, circles) also
include the size and outline-color attributes. Primitives like
text include specialized attributes, such as
horizontal-justification and font.

In Figure 2, we see the primitive inspector. The first
column contains the name of the icon. The second column
contains the names of attributes associated with the icon.
The last column contains a complex representation of the
map that is on the attribute. As we shall see, it is the maps
that provide the mechanism for dynamic change.

By default, icons created in the Icon Editor only include the
attributes of color, location, and visibility. Any additional
attributes are icon specific and must be added by the icon
designer. These new attributes constrain the behavior of
this icon as it is being used in an interface. Together, the
default and user defined attributes provide the control
points from the Graphics Editor into the new icon. When
relating this new icon to the application via tapping, only

Primitives
boundary OUTLINE COLOR

SIZE
LOCATION
VISIBILITY
COLOR

indicator OUTLINE-COLOR
SIZE
LOCATION
VISIBILITY
COLOR

II<Map
II<Map
II<Map
II<Map
II<Map

II<Map
II<Map
II<Map
II<Map
II<Map

STATIC-COLOR (:WHITE4:,YITE) 620??
STATIC-SIZE ((0.4 0.1?500004)4(0.4
STATIC-LOCATION ((0.28?5 0.4?5)4(0
STATIC-VISIBILITY (:VISIBLE4:VISIB
STATIC-COLOR (:BLACK4:BLACK) 620??

STATIC-COLOR (:WHITE4:WHITE) 62031
STATIC-SIZE ((0.0249999?6 0.150000
NUMERIC-LINEAR-LOCATION (04(0.2999
STATIC-VISIBILITY (:VISIBLE4:VISIB
STATIC-COLOR (:BLUE4:BLUE) 6202??5

.:.:::::::::::::::::::::::::: .. :: :::::::::::::c

Figure 2. The primitive inspector pane showing attributes
that can be dynamically controlled

these attributes will be accessible to the interface builder.
Similarly, when this new icon is ·used as a component of
another icon, only the default and newly defined attributes
will appear in the primitive inspector.

Transformation Maps

Attributes parameterize graphical behavior. For example, a
color attribute's value is used to determine the color of a
part of an icon using a vocabulary of color values, like red,
or green. Applications contain a separate language of
numeric or symbolic values. In order to perform dynamic
behaviors, an icon maintains a map for each of its graphical
attributes.

These maps accept an input value from an input device or
the application and modify it via a transformation. The
result is a mapped value that is used by the icon to
determine how to display the attribute. Maps are
implemented as objects with defined input and output types.
The convention for map names is to concatenate the input
type, the transformation, and the output type. For example,
a numeric-linear-size map takes a number and linearly
transforms it into a size value.

The system contains a hierarchy of maps that utilize
inheritance. The numeric-linear-size map is based on a more
general continuous-map. Maps of this class use minimum
and maximum inputs to compute outputs. In this case, the
outputs are minimum and maximum size specifications, so
as the numeric input moves between the minimum and
maximum value, the size smoothly varies between its two
sizes.

Newly created attributes initially contain static maps, whose
input type and output type are the same and perform no
transformation of their input value. Static maps maintain a
fixed state independent of changes in the application. They
can also be used in cases where their input value is of the
same type as their required displayable value.

An example of a specialized map is the
continuous-color-map. With this map a user sets minimum
and maximum values and the colors •to be associated with
these endpoint values. As the numeric input goes from the
minimum to the maximum, the attribute to which this map
is attached will continuously change from the color at the
minimum to the color at the maximum. For instance, a
thermometer icon might assign the inside color attribute to

526

have a continuous color map. The color extremes could then
change from an ice blue to brilliant red as the application
value varies.

In an application with standard sets of values such as [OFF,
ON], standard graphical mappings can be utilized to provide
uniformity throughout a class of interfaces. For instance, if
colors are used to represent state, an OFF component could
always be displayed as red, while an ON component is
displayed as green. The discrete class of mapping takes fixed
input states and transforms them into fixed output states.

Constraints

When building an icon, we allow the designer great latitude
in determining the flexibility of the new icon. There is no
requirement that the new icon be dynamic, and for some
applications a set of icons that are placed merely for
structure may be built. The more interesting case is the
icon designer giving the interface designer varying degrees
of modifiability by adding new behaviors to the icon. The
icon designer provides this by creating new attributes and
constraining them to the appropriate attributes of the
component icons.

Consider the following example of a constraint. As part of
building a bar graph icon, the designer wishes to allow a
view builder the ability to label the x-axis. A simple way to
do this is to place a text primitive centered beneath the
x-axis. The text icon has an attribute, text-string, which the
icon designer wishes to make available for the graph. An
attribute of the graph is created called x-axis-label. This
attribute is edited to be of type text and to propagate its
value to the text-string attribute of the text icon.

This form of constraint is called composition. This
constraint has a type, in this case text, and a series of one
or ·more attributes that are constrained to have the same
value. When the designer adds this type of graph to a view
and attaches its attributes to an application, one choice will
be x-label-axis. The view designer can put in an appropriate
text string, like Neutrons per Hour, for the bar graph label.

Typing

Every attribute is defined to be of a specific type. In
addition, input and output values of maps are also typed. By
convention, the type of a map is the type of its output
value. The system uses this information to guide the users

into making semantically correct choices for the selection of
maps for attributes and input values for those maps. Each
map placed in an attribute must have an output type which
corresponds to the attribute type. For instance, only color
maps may be placed within a color attribute. In addition,
each map knows what type of input value it expects. For
example, only [OFF, STANDBY, ON] are acceptable as input
to an off-standby-on-x map (where x is an unspecified
transformation and output type), and only colors will be
generated by a y-color map (where y is an unspecified input
type and transformation). With this knowledge specific help
can be provided when the designer of the icon is unsure of
the possible choices for attributes, maps, or values. This
information is also used to guarantee an icon's attributes
are tapped into legal values.

A mouse type is defined that indicates a mouse click is
necessary as an input value to a map. This stays within the
general paradigm of the mappings used throughout the
system and has proven effective as a general input
technique.

Use of the Icon Editor

We currently have a working prototype of the Icon Editor.
To demonstrate these ideas we will use two separate Icon
Editor examples. The first example will highlight the
construction of an icon to display a continuous range of
values. The second example will step through the process of
using the Icon Editor to solve a typical problem of
visualizing a new domain, that of monitoring the simulation
of queuing in a multiple processor environment. In order to
understand the implications of design tradeoffs in this
simulation, a set of new icons was created to present the
problem effectively.

Basic Bar

Figure 3. A basic bar icon

The basic bar icon displays a value by changing the size of
its indicating bar to reflect its value. This icon only needs
two primitives, a bounding rectangle which is the extent of
the icon and an indicator rectangle which will change its
size to indicate a value.

In the Icon Editor frame, we select the rectangle primitive.
This rectangle is placed and sized on the display screen to
become the exterior boundary of the bar icon. A second
rectangle is added which will become the indicator bar and
is renamed to be indicator. By clicking on the size attribute
of the indicator, we will edit this attribute enabling it to
transform numeric input from a minimum-maximum range
to a minimum-maximum size. An editing menu is invoked to
modify the map.

We first alter the default static map to be of the new type,
numeric-linear-size map. As we change the map, the
parameters that are unique to the map (i.e., minimum and
maximum values and minimum and maximum sizes) are

527

presented with their default values. The size values default
to the existing size of the indicator rectangle. When
modifying the maximum size parameter, the cursor is taken
to the display pane where we graphically indicate what the
indicator should look like when presenting its maximum

value. In this case the maximum size will completely fill the
boundary rectangle. The final edited menu is shown in
Figure 4.

~ :Edit Attribute IZE
Mappins: NUMERIC-LINEAR-SIZE

Min Value: B.B
Max Value: lB.B
Size for Min velue: (B.B24426B13 B.15569621)
Size for Max value: (B.35271132 B.15569621)

<AeoRT > aborts, ~ uses these values

Figure 4. Editing the map for the attribo1te SIZE of the
indicator primitive

Next the designer must create a new attribute that will be
available to users of this icon in the Graphics Editor. This
new attribute we will label VALUE, and it will constrain
the indicator's size. When editing the constraint for this
attribute, the designer selects the attribute type to be
numeric, so that the maps on the existing attributes
involved with this constraint must accept numeric values as
input.

Edit VALUE Attribute Constraint . ' i! Constraint Type: State Visibility Conposition
., Type of attributes: NUMERIC-ATTRIBUTE
ij Attributes to coMpose: <Indicator SIZE >
ij Mappins: STATIC-NUMERIC
i i Value: B
~(ABORT > aborts, ~ uses these values

Figure 5. Editing the constraint for the new attribute
VALUE on the basic bar

Then through a series of mouse actions, the designer
indicates that this new attribute is equivalent to the size
attribute of the indicator rectangle. The final attribute
constraint definition menu is shown in Figure 5. In this
way, the designer has specified that the new attribute
VALUE will constrain the numeric size attribute of the
indicator rectangle.

We can test this constraint by setting the value of VALUE
between 0 and 10 and see the indicator change size
proportionally between the minimum and the maximum
specified sizes.

Queuing Example

This example illustrates the capability of the Icon Editor to
work in new domains. A technique to notice here is modular
icon development by reuse of incrementally built
components. This modularity allows these components to be
included in libraries for future icon construction. This
example was taken from an application developed by the
Systems Technology Lab at MCC. A multiprocessor
simulation generated data which needed graphic support for

its analysis. An important condition to identify in the
simulation is convoys. Convoys occurred when the multiple
queues were being used inefficiently. The important point is
not the application but the process of creating the
supporting tools to help visualize this new domain.

The final 'view used with this data is shown in Figure 6.
Each box represents a processor, and each processor
contains three queues shown as a row of six circles. As the
simulation advances, each processor and included queues
maintain the correct presentation of its state.

I~
1--

~ I/ (/)
- ~~ !----

(jf)lf!/)(jJ)(jj) ~ •• f-.-.... ;
~~

Figure 6. An application view showing 6 icons created with
the Icon Editor

Basic Queue

Figure 7. A basic queue icon

We first created a basic queue icon that represents the
queue as a linear sequence of circles. When the queue is
empty, no circles are visible. As the queue fills up, more
circles are displayed.

After adding the six circle primitives to the new icon, we
edited the maps on all of the circles' visibility attributes. By
placing a numeric-threshold-visibility map on each attribute,
a single new attribute could control all the circles' visibility.
By incrementing the threshold on each successive map, the
number of circles displayed would grow. Figure 8 illustrates
one of the circle's visibility maps. This map indicates that
when the input value is 6 or more this primitive will be
visible.

~ Edit Attribute VISIBILITY
Mapping: NUMERIC-THRESHOLD-VISIBILITY

Visible above threshold: T
Thre,hold: 6

<ABORT> aborts, ~ uses these · values

Figure 8. Editing the attribute VISIBILITY of one of the
basic queue's circles

528

There are two important new attributes for this icon. The
attribute queue-value will be used to constrain the visibility
of the circles to represent the queue length, as described
above. After modifying each of the visibility maps, we can
then edit the attribute constraint for this new attribute as
shown in Figure 9. All visibility attributes (now with an
input type of numeric) are added to the list of attributes to
compose.

~ Edit

Edit DUEUE-URLUE Attribute Con,traint
Constraint Type: State Visibility Conposition
Type of attribute": NUMERIC-ATTRIBUTE
Attribute" to coMpose: <CIRCLE-I VISIBILITY>, <CII
Mapping: STATIC-NUMERIC

Value: 6
~ abort,, ~ u"e" these values

Figure 9. Editing the constraint for the new attribute
QUEUE-VALUE on the basic queue

The second important new attribute describes the color of
the queue. A designer using the Graphics Editor should
easily be able to specify the colors for all of the circles in
the queue. After adding another new attribute queue-color,
the designer edits its constraint as illustrated in Figure 10.
The icon designer first makes the attribute type to be
color-attribute. Then all of the circles' colors are constrained
by this attribute. Now when the interface designer specifies
the color via queue-color, it will be propagated to all of the
composed primitives.

~ Edit

Edit DUEUE-COLOR Attribute Constraint
Constraint Type: State Visibility Conposition
Type of attribute": COLOR-ATTRIBUTE

OL

Attributes to coMpose: <CIRCLE-I COLOR >, <CIRCLE-:
Mapping: STATIC-COLOR

Value: RED
<ABORT} abort,, ~ u"e" the"e values

Figure 10. Editing the constraint for the new attribute
QUEUE-COLOR on the basic queue

This completes the specification of the basic queue. We will
now show how this new icon is incorporated into a more
complex icon.

Three Queue

The previous steps define the basic queue icon. We can now
use it as a primitive in a three queue icon. In this icon we
include three basic queues as primitives to represent the
top, middle, and bottom queues. We must now specify the
new ·attributes that will provide access to the values and
colors for each separate queue.

Editing the value for the bottom queue is shown in Figure
12. The attribute type is NUMERIC-ATTRIBUTE, and the
attribute constrained is the queue-value of the bottom-queue.
The new attribute that will constrain color of the
bottom-queue is constructed similarly. We repeat this for
each of the three basic queues of this new icon.

Figure 11. A three-queue icon

J+ Ed1t
>

queue

Edit BOTTOn-QUEUE-VALUE Attribute Constraint
Constraint Type: State Visibility Conposition
Type of attributes: NUMERIC-ATTRIBUTE
Attributes to coMpose: <botton-queue QUEUE-VALUE>
Mapping: STATIC-NUMERIC

Value: 6
(AeoRT> aborts, ~ uses these values

Figure 12. Editing the constraint for the new attribute
BOTTOM-QUEUE-VALUE on the three queue icon

We add a line around the outside extent of the three queue
icon to finish the graphic display of this icon. After
invoking the command to define this icon, it is available
within the Graphics Editor. We can now build a view with
many multi-queue icons to visualize our domain task. We
tap the queue-values to the appropriate variables in our
simulation and watch as the various queues at each node
reflect the behavior in the simulation. It is interesting to
note that when the developers of the simulation came to
discuss the interface, their attention was immediately drawn
to the application and how the queues were performing in
the simulation. The interface fell away, and they were able
to pursue their task.

Future of the Icon Editor

We believe that systems in the future will not only be
reactive but will actively aid in the task being jointly solved
by the computer and its user. In order to support the user,
these systems will rely heavily on knowledge bases. These
knowledge bases will contain information on the application,
the user, and the interface itself. Our next major effort is
to provide an underlying substrate of knowledge about the
Icon Editor, the Graphics Editor, and interface design in
order to support the user in building more effective
interfaces.

We intend to represent the graphical knowledge that will
classify icons and relationships between the icons as they
are utilized within an interface. Currently, the Icon Editor
is being integrated with a common knowledge base language
used throughout HITS. By sharing this substrate, we can
incorporate other technologies developed in the lab.

Being part of a larger group, we are in a unique position to
create an environment that will support the user. We can
draw on the tools from within HI to provide advisory
capabilities, natural language support, and sketch

529

recognition. This integration provides more leverage than
merely having graphical knowledge available. Likewise, we
will be able to support others with the specific knowledge
about the graphics used in the interface.

One direction we are taking is the integration of our efforts
with the neural net sketch recognition capabilities. A new
class of interface building tools can be built by providing
the user with sketching as a way of specifying the icons to
be added, editing procedures to be invoked, and assisting in
library lookup for unknown icon types.

As well as drawing on knowledge, the graphics tools can
augment the knowledge base. As an interface is specified
either by sketching or from mouse interactions, a
description of the interface can be constructed by the
system to be used by other HITS tools. Knowledge of new
icons can be acquired easily and incrementally added to the
knowledge-base while using the Icon Editor.

Knowledge incorporated in graphics tools can assist in the
design process. With graphic design knowledge encoded, a
user can be supported with design critiques. Advice can be
given to suggest alternative layouts or more effective
designs, allowing the user to see specific instantiations of
solutions moving more rapidly toward the most appropriate
design. This set of design assistance tools will interactively
process the graphic interfaces generated by the Icon and
Graphics Editors and advise on and demonstrate, in context,
more effective graphical presentations.

Acknowledgments

We would like to thank the members of the technical staff
for their support and comments in the creation of the Icon
Editor as a prototypical tool in the Human Interface Tool
Suite. We would especially like to thank Tim McCandless
for his efforts in applying it to other components of HITS,
making them more inspectable. Most of all, we would like to
thank Jim Hollan for his vision of what HITS could be and
for creating the kind of environment in which research and
good ideas can flourish.

[1]

[2]

[3]

[4]

Bibliography

Borning, A., Defining Constraints Graphically,
Human Factors in Computing Systems April 1986,
137-143.

Foley, J. D., McMath, C. F., Dynamic Process
Visualization IEEE Computer Graphics and
Application March 1986, 16-25.

Gould, L., Finzer, W., Programming by Rehearsal,
Xerox Palo Alto Research Center Technical Report
SCL-84-1. May, 1984 (excerpted in Byte 9(6) June,
1984).

Hollan, J. D., Hutchins, E. L., Weitzman, L.,
Steamer: An Interactive Inspectable Simulation-Based
Training System AI Magazine, Vol. 5 No. 2, 1984,
15-28. (reprinted in Artificial Intelligence and
Instruction, (Ed.) Greg Kearsley, Addison-Wesley,
1987).

[5] Hollan, J. D., Hutchins, E. L., McCandless, T. P.,
Rosenstein, M., & Weitzman, L., Graphical Interfaces
for Simulation Advances in Man-Machine Systems
Research, Vol. 3, (Ed.) W.B. Rouse, Jai Press, 1987.

[6] Martin, G., Avery, J. , Pittman, J ., per sonal
conversations about the capabilities of neural net
sketch recognition.

[7] Members of the Human Interface Laboratory,
Demonstrations of HITS 1.0: The Human Interface
Tool Suite, MCC Technical Report ACT-HI-116-89-P,
March 1989.

[8] Myers, B. A., Visual Programming, Programming by
Example, and Program Visualization: A Taxonomy,
CHI'86 Conference Proceedings, April 1986.

[9] Myers, B. A., Buxton, W., Creating
Highly-Interactive and Graphical User Interfaces by
Demonstration, Computer Graphics Vol. 20 No. 4
1986, 249-258.

[10] Weitzman, L., Designer: A Knowledge-Based Graphic
Design Assistant, University of California, San Diego,
Institute for Cognitive Science Report 8609, July
1986. (Reprinted in MCC Technical Report
ACA-HI-017-88, January 1988).

[11] Weitzman, L., Rosenstein, M., Winkler, A., The
HITS Simulation Environment, MCC Technical
Report ACT-HI-120-89, May 1989.

530

