TOOLS FOR GRAPHICAL INTERFACE DESIGN

James Hollan
Edwin Hutchins
Mark Rosenstein
Louis Weitzman

Future Technologies
Navy Personnel Research and Development Center
San Diego, CA 92152

Intreduction

A major element on our research agenda is to understand the power and
perspicuity of graphical interfaces. In most of our work we have been concerned
with exploring the usefulness of graphics for supporting the development of
understandings of complex dynamic physical systems. An important message to
builders of instructional systems from cognitive science and artificial intelligence is
the crucial importance of mental models, not only for understanding how experts
represent knowledge but also for understanding the errors a novice might be
expected to make.

We have argued (Hollan, 1984) that much of the naturalness and power of
graphical interfaces results from the vast amount of experience people have in
dealing with objects physically arrayed in space. Graphical interfaces can draw on
this experience by providing representational elements that map more directly (than
say text) to a person’s mental model of a domain. In this way, the interface can make
visible conceptually important aspects of a domain. In addition, it makes possible
the depiction of systems with greater fidelity to the way we think and reason about
them by providing multiple perspectives, maintaining explicit state information, and
depicting a topology that supports and encourages the use of visualization skills.

The goal of this paper is not to reiterate our earlier arguments, but instead to
survey a set of tools we have implemented to facilitate graphical interface
construction. We think that these tools are examples of mechanisms that allow the
combination of human and artificial intelligence and thus their discussion is germane
to the topic of this conference. Before describing the tools, we would like to
mention some of the ideas which motivated them. One motivation is our conviction
that interactive graphical interfaces enable powerful new ways for people to interact
with machines. Our experience building inspectable simulation-based training systems
has convinced us of this and of the crucial importance of recognizing the variety of

Tools for Graphical Interface Design
2

types of knowledge that must be combined to build a successful system. One cannot
expect to build effective instructional systems or interfaces without having a rich
understanding of the domain of application. Knowledge of human cognition, the
way people do and should think about the domain, must also be used to augment the
domain knowledge in order to make it accessible to a student. Likewise, hardware
and software technologies must be understood so that they can be effectively
employed to provide productive interactions.

In order to assist in satisfying the requirements for these diverse types of
knowledge, we have been building a set of tools that provide domain experts with
facilities that implicitly snpport good interface design and allow them to do an
increasing portion of the interface development task. By applying the same stringent
requirements to the tools that we apply to the interface that the designer will build,
we make the incorporation of the expert’s knowledge into the design of the interface
much more natural. If the tools allow the expert to work closer to the way she thinks
about the domain, this traditionally hard task is simplified.

The types of interfaces we are interested in have sometimes been called Direct
Manipulation (DM) interfaces (Shneiderman, 1982). That is an appealing term in that
it captures some of the feel of the interface, but only a portion of the power of a
DM interface consists of the feeling that one is directly manipulating objects on a
screen. Much more important in our view is that the semantics of the task domain
are built into the behavior of the interface. The entities depicted and the operations
made available are those that closely match the way one wants to think about the
domain. Surely the three principles Shneiderman lists are important to interface
construction,

Continuous representation of the objects
Physical actions or button presses instead of complex syntax

Rapid incremental reversible operations whose impact on the object of interest
is immediately visible

but the real power lies in what aspects of the domain get represented, how they are
depicted, and how appropriate the operations provided are to the semantics of the
domain. Thus, for example, the real power of spread-sheet programs is that actions
directly associated with the semantics of the domain, like making projections, are
immediately available. One changes a number and the implications of that change are
automatically propagated. This allows the user to think at a level appropriate to the
task, not at the level of the mechanics of arithmetic.

Our concern in designing tools to support interface construction is more with
building systems for experts than with building expert systems. We would like to
provide tools that allow people who are expert in a domain to build interfaces that
incorporate their expertise an: make it available to others. We want to construct
not just tools but tools for making tools. The tools we discuss in this paper were
motivated by a concern for the ways graphical interfaces can support the

Tools for Graphical Interface Design
3

development of effective mental models for reasoning and problem solving. The tools
include: an object-oriented graphical editor developed to assist us in building
interactive inspectable simulation-based instructional systems, a behavior editor
which allows one to create simulations by putting together iconic representations of
parts, and an icon editor which supports the design of new graphical icons and
allows the specification of new dynamic graphical behaviors.

Graphics Editor

The Graphics Editor originated out of our work on the development of
Steamer (Hollan, Hutchins, Weitzman, 1984). A major aspect of Steamer is the
ability to view and interact, at a number of hierarchical levels, with a simulation of a
propulsion plant via a color graphics display. For example, one can interact with the
simulation at an abstract level such as is depicted in the Basic Steam Cycle diagram
(Figure 1) or at a more detailed component system level, such as the Make-up and
Excess Feed system (Figure 2). These dynamic graphical views consist of iconic
depictions of components, gauges, and other objects designed to assist one in
understanding and interacting with the plant.

It is important to understand that this graphical interface functions in two
ways. First, it reflects the state of components in the simulation. Thus, for example,
it reveals whether a particular component is operating or not by means of changes in
color or other graphical features of the iconic representation. A pump’s state is
depicted by its color, appearing green if it is operating and red if it is off. Columns
above valves show how far open the associated valve is. A second function of the
graphical interface is to allow one to change the state of a component within the
simulation model. Such changes are made by manipulating a mouse pointing device.
For example, one could increase the level of a tank in Figure 2 by pointing at a high
position in the tank and clicking a button on the mouse. The tank would
immediately reflect the new level and more importantly the propagated effects of
that change would also immediately become visible. If one were to raise the level of
the tank on the left in Figure 2, it would cause the Reg Valve to open. Raising it
above a certain level would cause the 1b Forward Pump to turn on. Thus, the
graphical interface allows both the monitoring of the state of the plant and also its
manipulation.

Diagrams are built using a Graphics Editor. An important part of a curriculum
designers task, in construction of a Steamer-like interface, is to put together
diagrams that assist students in understanding a simulated system. The black and
white screen depicted in Figure 3 provides the designer with editing and critiquing
controls, while the color screen reflects the current state of the diagram, such as seen
in Figures 1 and 2, and provides control over the layout of the icons. Consider the
designer building the diagram drawn in Figure 2. To lay down a tank in that
diagram, the designer would select a tank icon from among the existing icon types.
The cursor would immediately be moved to the color screen and the designer would
choose a location for the tank by clicking a mouse button. The shape of the tank

Tools for Graphical Interface Design

would then be determined by moving the mouse and clicking again.

Once the diagram is completed using the tools provided by the graphics editor,
the designer must relate the graphical depiction to the underlying simulation model
of the 1200psi steam plant. The process of connecting icons to the simulation model
is called tapping. The communication between the icons and the simulation model is
through variables. An icon can probe and/or set variables. On each tick of the
simulation an icon that probes a variable will reflect the value of that variable. For
example, a dial would change the position of its needle to show the current value of
its associated variable. An icon that sets a variable when interacted with will set the
variable in the simulation model to reflect its current state. To tap the left tank in
Figure 2, the designer clicks on tap on the B&W screen. A menu pops up (see Figure
4), into which the designer types the names of the appropriate variables.

Building Steamer diagrams required the existence of suitable icons to represent
the physical components. It also required a math model which would simulate the
actions of a steam plant. For Steamer, we have hand constructed the large set of
icons. A sample of these is shown in Figure 5. We also had access to a high fidelity
simulation model of a propulsion system. The goal of much of our current research
is to produce tools that will relax these constraints and facilitate the construction of
similar instructional system for other domains. We now turn to a discussion of two
of these tools: a Behavior Editor and an Icon Editor.

Behavior Editor

One real obstacle to & domain expert being able to use the Graphics Editor to
construct an interface for a domain is the requirement of an existing mathematical
model of the domain. Even if a model is available it is unlikely that a domain expert,
without significant additional effort, will have sufficient understanding of the
simulation model to be able to tap icons into it. The Behavior Editor is an initial
exploration of a tool which would eliminate the need for an underlying simulation
model. The icons in the Graphics Editor know how to "appear” in order to represent
the status of variables to which they are tapped, but the behavior of the system is
defined by a simulation model. The Behavior Editor is composed of icons that know
both the behavior and the appearance of the objects they represent. The behavior of
the system emerges from the interactions of the icons with each other. The ability to
incorporate the behaviors required in a simulation is facilitated by the object-
oriented implementation of icons. For example, consider a dial. In the object-
oriented system we use, Flavors, many of the properties of the dial actually come
from component objects (Mixins, in Flavors terminology).

These components are in fact common to many of the icons. Figure 6 shows
some of the components of a dial: Continuous, Rectangular and Tap mixins. Into
any icon that displays continuous values, we add the object called Continuous. This
object provides the icon a place to hold the icon’s value and the minimum and
maximum values the icon can display. The Continuous Mixin also provides

4

Tools for Graphical Interface Design
5

commands, or messages the dial icon will understand, such as constrain-value which
truncates a number to be between a minimum and maximum value. Icons such as
dials or valves understand other messages like draw which cause the receiving icon to
draw itself on the color screen.

To make intelligent icons capable of generating a simulation, it is necessary to
add components with domain and simulation knowledge. We have built a number
of icons that know the rudiments of fluid dynamics and understand about
connections to other icons. These include tanks and pipes that know about pressure
and flow, so they can be used in fluid systems. Figure 7 depicts a very simple system
constructed in exactly the same manner as with the Graphics Editor but involving
behaviorally “smart” icons that can be connected together. These icons have
mechanisms for recognizing when connections should be made and thus the topology
of the diagram is automatically generated.

An excellent example of the flexibility engendered by icons with connectivity
knowledge is the Super Sensor. This icon is a dial which asks icons it connects to
what variables can be monitored and which variable to measure by default. In Figure
7 notice that a Super Sensor is connected to the middle tank, to monitor its level.
Sensors know how to monitor appropriate aspects of the objects to which they are
connected. We can manipulate these aspects by clicking on the Miscellaneous menu
item on the Behavior Editor screen. In Figure 8 we see that the sensor has defaulted
to measure value, which is highlighted. If the designer wishes, he can change the
sensor to measure fluid exchanged by clicking on that menu item. When we interaci
with the tanks, setting their levels, we are actually setting the initial conditions of
the simulation. On the Behavior Editor screen (Figure 8), we can then click on run,
and the simulation will run till equilibrium. It is important to notice a fundamental
difference between the Behavior Editor and the Graphics Editor. In the Graphics
Editor, the designer would need a mathematical mode! of these tanks and pipes and
then it would be necessary to find the appropriate variables to tap the icons into.
Here the icons themselves perform the required computations for the simulation.

All these icons, both those with and without domain knowledge, were hand
coded. It became clear to us that while these icons are useful in this particular
domain, we required a tool to help expand the range of domains by facilitating the
building of new icons. We have begun the construction of an editor to assist in
creating new icons without requiring the user to resort to traditional programming.

Icon Editor

The development of an Icon Editor is one of our current projects. The
interface to this editor is depicted in Figure 9. From a set of basic icons and
behaviors a designer with knowledge of the fundamentals of a domain can construct
icons, both for Behavior Editor applications and also for use with the Graphics
Editor when a simulation is available. The Icon Editor provides an environment in
which complex icons can be constructed from more basic ones. In addition, we also

Tools for Graphical Interface Design

provide mechanisms for a user to specify new behaviors for icons. The pane labeled
Existing Icons in Figure 9 shows the set of icons an icon builder can choose from. As
component pieces of the icon are added, their presence is reflected in the
Constituents list. Procedures for the new icon are constructed in the Method area.

One of our current interests is in understanding the task of creating an
intelligent appointment planner. As part of that work, it was necessary to construct
calendars. A calendar’s basic unit is a date object. Its use in an intelligent calendar
would be to interact with other calendars to resolve scheduling conflicts. Thus, a
person might instruct the calendar that she would like to meet with another
individual. The calendars of the two individuals would then negotiate an agreeable
date. The date objects would also have a graphical form to provide a means of
visually displaying the calendar. Here we consider how that image would be built up
and how a simiple behavior for the icon would be constructed.

The image of the date is a box with the day and the numerical date. An icon
builder, first specifies the components of the date icon. From the list of existing
icons, a rectangle is selected as the outline for the date icon. Clicking on name, a
menu pops up with the default name Rectangle. "Background” is then typed into the
name slot, allowing this icon to be referred to with a meaningful name. In a similar
way, we can lay out a day and numerical date in the date icon. These are also given
names and default values and colors. These are the constituents listed in the
Constituents Pane of Figure 9.

We are currently exploring methods that allow the icon builder to specify
behavior. To continue with our example consider an icon builder specifying the
behavior to change the day. The builder selects Method in the menu and types in the
name of this message: ser-day. A menu pops up allowing the specification of day as
the argument to the message. The three steps in changing the day are to have the day
erase itself, set its string to be the new day, and then draw itself. Clicking on
Transform allows the specification of the first step in the procedure. The builder
clicks on day, and then types in the message erase, which is what the day should do
first. Clicking on Do It installs this step. Similarly the other two steps are defined.
These are the steps shown in the Transforms Pane of Figure 9. To test the
procedure, we might click on send. A menu would pop up asking us to specify what
day. We might type in Thursday, and click on Send. On the color screen, the day
would change to Thursday, providing immediate feedback that this procedure is
correct. In this way behaviors for the icon can be specified. Our first experiments
allow specification through defaults and pop up menus. In later versions, we expect
more and more of this specification will be performed graphically.

6

Tools for Graphical Interface Design
7

Future Work

Currently we are building views into real-time systems, such as the view shown
in Figure 10 which monitors activity on a VAX 780 running Unix. A statistical
assistant and a scheduling assistant are also under construction. Other support tools
are in the planning stages. One of these is a Graphics Design Assistant to help a
domain expert better utilize knowledge from the graphic arts to provide views that
are visually more consistent and informative. An instructional support tool is also
being planned which will allow the domain expert to specify activities and tests based
around a diagram or a series of diagrams.

Conclusion

In this paper, we have briefly discussed three tools: the Graphics Editor, the
Behavior Editor, and the Icon Editor. These tools greatly facilitate the construction
of interactive graphical interfaces. The ability of students and researchers to see into
systems increases their ability to understand and control tl.ose environments.

A particularly appealing aspect of the theme of this conference, Combining
Human and Artificial Intelligence: A New Frontier for Human Factors, is that it may
lead us to look beyond the current fascination with expert systems to much more
exciting forms of interaction, interactions based on the understanding that the
computer is more than a new tool: it is a new medium for the construction of tools.

References

Hollan, J. D. (1984). Intelligent Object-Based Graphical Interfaces. Human-Computer
Interaction, G. Salvendy (Ed.), Elsevier, Amsterdam, 293-297.

Hollan, J. D., Hutchins, E. L., & Weitzman, L. (1984). STEAMER: An Interactive
Inspectable Simulation-Based Training System. Al Mcgazine, 5 (2), 15-27.

Shneiderman, B. (1982). The Future of Interactive Systems and Emergence of Direct
Manipulation, Behavior and Information Technology, 1, 237-256.

T 390913

un

dg8}] 3] 940-8U(¢I8-387uUcBURIER

<JRULI8¢: 8 37040-SH

(H3In) 4934p3 s8dpyded
&dodpiv g S
Aoy Jojsued |

m nnnnnnnnnn .””

H ==

; et

015 | eveemenvn. e T

L} 5 [

091" on o5z
LA = 2lSd
ot oo - S5 ONOD
SS3a Wm . L= [&=

.ﬂnﬂ on— -

oI%d si= = o e - -

es= = hed e

oes seC = "1 -

01 NN Tuon

SSe Mg == —=-

-z

”-=

ez1— =

wntoe o
Lot~ -4 |

AND N6

soe. // 1337 n,.,/l \\.._ ﬁ
JTOAD WY3LS DOIsudg

I031py mommmmmb

¢ ddNOIA4

un

(M3IA) Y03}1p3 s3iydeu

nn»—.qukunnuoxucoaluxocnuumzniv:laxon»nnn:ogmo*vnLu:auunA"w»m = —df-
AdOSpav Y
w3 Jeap) Ay mysues) —

ds;7

0334 SS30X3 '8 dN-3I¥ul

I031p3[moﬁmmuw

Graphics Editor

FIGURE 3

Draw

‘Graphics Editor

o | 1 gl
SHEUHY

i)
?g 3 gg
g 23

Eg 3§t e Bt

Hi T gg

ig ffgisj
i

Draw
List
Describe
Inspect

Delste
Undaiate
Default
Edit

o o0 € oo
55§§3BP
53 35F

za
3£888%
) gy

FIGURE 4

dasyy e L._.n_tl.AuutL:vao|xun Lg¢SW@UBe D (JBURIYS ¢ 131340

G TdNOI A

3 A31dHHS JO7q 83} yde s
Adoopevy 517
Tea) [Aoy | oysues)
8t 8 9 v 2 o
e e e
a1 -2
_I—.' . 8 - v
0ry e BE ~ .ot - 9
s e %4 ~ 8
P es qoe b @i
] A *alye

-—

o3 ims o2ims 20303(2
IR S iy
e ()
{eubs N oo Jeq 39040y
[®
se
s
. ﬂkll
abuezo| uobe3oo ajbuesuy puowey p

<

d37dWUS NOOI

Qi

dwnd dwnd

41w Aueyou [ebnyjujuas

&

43 Jeq [e3iBip

auenbs

Ionpy sorydeisy

dS}|°3IN32NJ4IB-_UO0I} (IS-08JU(SURIBR | P (IBURDIS ¢ 131340

w3

Jeap)

Adoopivy

mjsuey |

9 H¥NOIdA

un.

{UHNON) J03}p3 ®9}ydey

ds77

1

JOART 4 May

3q04d ‘335 ‘IN[RA-U}BIIBUO)
ases3 ‘B YBIH ‘wiw]) ‘moys ‘me.

WJO 4-3Q04y ‘W0 4335 ‘BN[WA-XBY ‘BN|RA-UY
IN[EA ‘242X ‘TA ‘IX ‘PUI-ON ‘3IeIS5-O8y ‘snipey

!

!

!

!

aseu3

2qouy anjep WO yb i moys
135 —ujvJIIsUO) wie[) ne.g
wuo 4 an[ep-xay puz-o8y
-3qoy anpeA-uiy 2A ‘2 1eI5-0y
wJ0 4335 N[ep A ‘IX snjpey

de) snonuf3uc) S [nBueysay teig

SUT XTI

(@1 - 94N3ONUG UOOT [RUUIIU]

—

toupy wrqders

L H4NO1 A

(Jauead8(:

* MOLIHIOHIS- ML (MAON) 203}p3 83}yde.s
Xdoopiv g dsr1
W Joop) Aot ygravyy JBJSURJ |
1 =
H ”.
ki il
= ;
at "]
Josuag sadng 8
9 v

uorjenuis sadrd pue s)yuej

JO1IP HOTVNE

8 ddNdTA

asooy

"UOL IR NULG-S3d | 4-pue-8Xue (8UEUB®| P (JIBURIIS (TN I3
ﬁnmnu‘ faefnuis. d-P! Hue | : nmmmwﬂ
4aY30 pYLETIT:] odi4 Jouueg
[11,] IX0)
nup eigisng oweyy
BAIRA Aem ¥ Joee.g 3naunD 1eug
BAjRA Aem C Bpsg aeg uvobBAjog
oAjeA Jo3winbay Bisg Jeg 83404 sun
oajep A13eg seg jw3ybig
BAITA J0|I8Y Yo
" BAIRA NIBYD des) esindw yueyg uobeiso
oAjwA doiseiBuy Joujeng xeidnQq uwnod uoBwxey
oajeA doig Jouenig A g puowe)q
Jo08usg Jsedng pjozedesy
ya3mg #1860y 20290(3 v o] sJosusg oibuep
yaymg Lurioy ebuszon
YI2Mmg oyquy dwng Aie3oy ydesp 1014 iy sbueisey
y2ijmg Jeg dung (ebryuaue)n ydesp 8D
[« EYEE!

%
Q3DNYHOX3-QiN4 (BTIVA 403 juoy o] @

HINNYE HdYUD

Lqeroenl 17p7
JYNDIS HYE-TVLIDId UvE8-30u04 uvy NNMTIOD TV :adA | JUILNIIBUT
g d34i5;

- ENOSUE|

T 4 TV ~~LEPUY)
000 ewep eAyy L a3eQ
PO 27
AT w
egenbg | NGB moug Pui4 peddeiun Jemp)
reunBeg ang meg edh) padds) wbigybiyy
WEEMSQ
108 32vIBLy sde | Jonegy [)] PR
emniiyuon Kdoopaeyy 28pI0aL odk) CATEYY ¥
ezgenRg MmeuQ i cwBR ansg swebeg

ANL O3 P33OBUUCD <2TUASILE HOSNIS-YINS>w J0SUBS Jadng

.....

‘SUOJ| PIyIEU 4O BU2IURIRD BNOIUER| (BOS|U 399

- (3 403 82 | yde s
ds;7

B<$S91254€ xzmkvL

I0}1

Pd_Iotaeygeg

6 d¥NOI4

A

©UIB AU~ 13 Gessayy

£ : g ¥ & @3eq (HHAH0N) 9o3tp3 uoo]
swiofsunay 5, AVA- LIS S0 wopog SPOYIo 17
puzgy
s sued |
SOUVY-LNOHLIM MVvuQ AeQ nrepy
SOMY-HLIM DNIWLS-L1X31-138 AeqQ =
SOMV-LNOHLIM isvyl Aeq Popey
SsWIofsunay s, \Qm- mmu mo Qom
9517 601eD)ID4 PNBISU] S0 Wogog $9qU74D A
=
)7 sw0dp Buysixg fo wapog snuajy
LNIOdTIHd oeyey o] feqey
1X3iL | eymyoy dey 007
Pev WINNVE
T ...3&.:& ooungsuy fo &om NODATOd 12D
IS} SPusRYI5w0)) Jo wagog S§udnYISUO)) NN '
QI023dvuL
ITEPEY) NODVYX3H ssenbg | Sod ;3_ \oug
amoy anowvia reunfeg 8 a0
suwren X08anos
edweyg %08 ©odJ 83250dwWic’)
Adop TIONVIYL wg oAy M
e/ NoDV1oo | Adoopiey 328dny eAsg
oieqg jvopswny | G3M@pUN ION3ZOY | IRy sqasag
AeqQ ®aeg TIONV LD meqq Curey) a4
punaubyaeg P owo | SRRy] QL)
)7 spmaysswo)) fo dog $1T swoor Buusixg Jo doy

I0JTP5 wod]

0T F¥NOIdA

»:00°H 8/
JdJopieg e

.—..'R/ CE .__ BT I 0

nn*».xvcanuu*cznvCQIJUQFnAu:oLmovaLv:ouunA"mhmmu s XINO (H3IA) Jo3ip3 s2jyde
Xdoopav] ds17

Adunapavgyg

s mres) (*paiard
03 %o Adoop sey :ww;ub 404 sanbay : : J

pPuU023g Jay exnaag

ot 8 9 4 2 e es "]
o] Rl 17 Fedn
5 - - . Rl -, ”m . ﬂm:
£ o Tladn
ot e E @S ady
; @9 83235 xsiq
%]
%)8
% 574
% %)
% %14
L agg
- ©
a2
ov
as
28
Wyl I[PI IUdu3y @1
a
b
r 0ot
- BT
e =
8] [e) waisfig M&u
YIS AYdSIq
oo
QoY [T
poid XINM

sydnauayur

Ioupy sorydess)

