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ABSTRACT 
 
Assessing teams in complex military environments requires effective tracking of individual and team 
performance.  Indeed, performance measures must be both accurate and timely in order to provide effective 
real-time alarms. However, current methods of monitoring team and group performance often rely on 
delayed outcomes or global metrics that are insufficiently detailed to detect failures until recovery is 
impossible, and are often unable to reveal the causes of failures.  An untapped source of timely and 
diagnostic information lies in the communications among team members.  The DARCAAT program 
developed and tested a toolset for automating team assessment and near real-time alarms.  The toolset uses 
Automated Speech Recognition and Statistical Natural Language-based techniques for embedding 
automatic, continuous, and cumulative analysis of team communication in training and operational 
environments. The techniques include measures of the content, patterns, and style of team members’ 
communications. These measures were combined using machine learning techniques to develop 
performance models based on Subject Matter Expert (SME) ratings of teams.  
 
Focusing on the domain of convoy training, we collected team performance and communication data from 
the Fort Lewis DARWARS Ambush! convoy training virtual environment and from the National Training 
Center’s live convoy STX lane training.  Tests of the performance models and critical incident detection 
capabilities showed that the technology agreed significantly with SMEs’ ratings of teams, and could 
identify a majority of the team critical incidents. In this paper we discuss the implications for modeling 
team performance based on communication, describe the development of the technology, and demonstrate 
how it can process communication to detect critical incidents and to generate team performance metrics.  
Finally we describe how this technology can be integrated into training systems for automatic team 
assessment.  These systems can provide automated feedback and can alert teams and commanders of 
potential problems before they occur. 
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TEAM COMMUNICATION AND 
PERFORMANCE 

 
Monitoring teams of decision-makers in complex 
military environments requires effective tracking of 
individual and team performance. However there are 
numerous challenges to effectively identify, track, 
analyze, assess, and report on team performance in real-
time in complex operational environments. For 
example, current methods of assessing team and group 
performance often must rely on temporally delayed 
outcomes or global metrics.   These metrics often lack 
information rich enough to diagnose failures, detect 
critical incidents, or suggest improvements for the 
teams for use in performing their tasks.  An untapped 
source of more timely and diagnostic information lies in 
the ongoing communications among team members.  
 
Team members who communicate with each other 
provide a rich source of information about their 
performance.  The communication data includes 
information both about the structure of the social 
network and the content and quality of information 
flowing through the network.  The structure and 
communication patterns of the network can provide 
indicators of team member roles, paths of information 
flow and levels of connectedness within and across 
teams.  The content of the information communicated 
provides detailed indicators of the information team 
members know, what they tell others, and their current 
situation.   
 
Additionally, communication data can provide 
information about team cognitive states, knowledge, 
errors, information sharing, coordination, leadership, 
stress, workload, intent, and situational status.  Indeed, 
within the distributed training community, trainers and 
subject matter experts typically rely on listening to a 
team’s communication in order to assess that team’s 

performance.  A number of studies have shown that 
communication provides valuable indicators of team 
performance.  For instance, Achille, Schulze and 
Schmidt-Nielsen (1995) found that the use of military 
terms, acknowledgments, and identification statements 
increased with experience.  Similarly, Jentsch, Sellin-
Wolters, Bowers and Salas (1995) found that teams that 
identified typical flight problems faster made more 
leadership statements and more observations about the 
environment than slower teams.  Coding of 
communications has  shown that team performance is 
significantly associated with the frequency, sequences 
and types of task-related communications as well as the 
appropriate use of social markers such as 
acknowledgements (see, Bowers, Braun & Kline, 1994; 
Bowers, Jentsch, Salas, & Braun, 1998; Fischer, 
McDonnell & Orsanu, 2007; Kiekel et al., 2002; Kiekel 
et al., 2004). 
 
However, to effectively exploit the information inherent 
in communication data, technologies are needed that 
can assess both the content and patterns of the verbal 
information flowing in the network and convert the 
analyses into straightforward metrics that are usable by 
teams and commanders.  With the advent of improved 
natural language processing, computational semantics, 
automated speech recognition and machine learning 
techniques, it is feasible to develop automated 
techniques to analyze team communication and predict 
performance.  Applying such techniques to training 
would permit the development of low-cost tools that 
could automatically and unobtrusively monitor, assess, 
and provide feedback to team members and trainers. 
 
Objectives 
 
The primary objective of the DARPA Automated 
Competence Assessment and Alarms for Teams 
(DARCAAT) program was to develop and validate a 
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toolset for embedding automatic, continuous, and 
cumulative analysis and assessment of verbal 
interactions in team training and operational 
environments. The goal was to create the toolset and 
implement it as a real-time team performance alarm 
system using natural language, statistical, and other 
analyses of team communications, and then test it with 
convoy training data collected from the DARWARS 
Ambush! simulation at Fort Lewis and the National 
Training Center (NTC).  Once built, the objectives were 
to test the performance of the system on the collected 
datasets and to evaluate the feasibility of developing a 
toolset for low-cost automated performance assessment 
and alarms.  
 
Automated Communication Analysis 
 
Automated verbal communication analysis involves 
applying a set of computational modeling approaches to 
networked communication in order to characterize the 
verbal communication as useful assessments of 
performance. These characterizations could include 
metrics of team performance, feedback to commanders, 
or alerts about critical incidents related to performance.  
This type of analysis has three prerequisites.  The first 
is the availability of sources of clear verbal 
communication.  Second, there must be performance 
measures which can be used to categorize, rank or 
quantify the communication in terms of actual team 
performance.  Finally, these prerequisites can be 
combined with a set of computational approaches 
applied to the communication in order to perform the 
analysis.  These computational approaches include 
computational linguistics methods to analyze 
communication, machine-learning techniques to 
associate communication to performance measures, and 
finally cognitive and task modeling techniques.   
 

 

Figure 1.  The Communication Analysis Pipeline 
 

By applying several computational approaches to the 
communication, we have a complete communication 
analysis pipeline as represented in Figure 1.  
Proceeding through the tools in the pipeline, spoken 
and written communication are converted directly into 
performance metrics which can then be incorporated 
into reports and visualization tools.  This analysis 
makes possible applications that can support 
commanders and Soldiers such as near-real-time alerts 
of critical incidents, timely feedback to commanders of 
poorly performing teams, graphic representations of the 
type and quality of information flowing within a team 
and automatically augmented AARs and debriefings.  
This paper outlines the overall approach, reports on 
results from tests of its application to automatically 
convert team communication into effective and accurate 
performance metrics, and discusses how it can be 
integrated into training and monitoring applications. 

 
MODELING APPROACH 

 
In order to process communication, technology is 
needed that can “understand” the meaning of what is 
being conveyed in the communication.  The primary 
underlying technology used in this analysis is a method 
for mimicking human understanding of the meaning of 
natural language called Latent Semantic Analysis 
(LSA), (see Landauer, Foltz & Laham, 1998 for an 
overview of the technology, and Foltz, 2005 for its 
application to team communication analysis).  LSA is 
automatically trained on a body of text containing 
knowledge of a domain, for example a set of training 
manuals and/or domain relevant verbal communication.  
After such training, LSA is able to measure the degree 
of similarity of meaning between two communication 
utterances in a way that closely mimics human 
judgments.  This capability can be used to understand 
the verbal interactions in much the same way that a 
subject matter expert can compare the performance of 
one team or individual to others.  The results from the 
LSA analysis are combined with other computational 
language technologies which include techniques to 
measure syntactic complexity, patterns of interaction 
and coherence among team members, audio features, 
and statistical features of individual and team language 
(see Jurafsky & Martin, 2008 for an overview of 
approaches to language analysis). These features 
include measures that examine how semantically 
similar a team transcript is to other transcripts of known 
quality, measures of the semantic coherence of one 
team member’s utterance to the next, the overall 
cohesiveness of the dialogue, characterizations of the 
quantity and quality of information provided by team 
members, and measures of the types of words chosen 
by the team members.   
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The computational representation of the team language 
and the team performance ratings are then combined 
with machine-learning technology to predict team 
performance metrics.  Machine learning techniques 
including hill-climbing methods such as stepwise 
regression, discriminant analysis, and Support Vector 
Machines (SVMs) are then used to determine the 
language features that best model the performance 
metrics without overfitting the data.  In a sense, these 
methods learn which features of team communication 
are associated with different metrics of team 
performance and then, predict team performance 
metrics for new sets of communication data.  
 

PRIOR WORK 
 
Individual components of the communication analysis 
pipeline have been previously researched and tested.  
Over a series of studies, computational language-based 
communications methods have been evaluated 
favorably in terms of their ability to predict team 
performance.  For instance, they are successfully able to 
predict team performance scores in simulated task 
environments based only on communication transcripts 
(Foltz, Lavoie, Rosenstein, & Oberbreckling, 2007; 
Foltz, 2005; Foltz, Martin, Abdelali, Rosenstein & 
Oberbreckling, 2006; Gorman, Foltz, Kiekel, Martin & 
Cooke,  2003; Kiekel, Cooke, Foltz, Gorman & Martin, 
2002; Kiekel, Gorman & Cooke, 2004).  Using human 
and ASR transcripts of team missions the methods  
predicted both objective team performance scores and 
SME ratings of performance at very high levels of 
reliability in a UAV environment, in simulators of F-16 
missions, and in Navy TADMUS exercises. 
 
Overall, the results from prior research indicate that this 
technology can provide a robust approach to the 
development of a system for automated analysis of 
team verbal communication. While the prior work 
shows that individual components can succeed, the 
present work sought to build the combination of the 
technologies into a single modeling and performance 
prediction toolset running on data collected from live 
and virtual military events.  
 

DATA COLLECTION  
 
In order to develop and test the tools, convoy lane 
training was chosen as a domain because it is a critical 
component of effective operations in Iraq and 
Afghanistan. Convoy lane training involves interacting 
teams of 5 to 40 persons, with disparate pieces of 
knowledge, and includes command and control and 
situation awareness issues (see Kuhn, 2004).  The goal 
was to observe convoy training and collect 
communication data along with other indications of the 

performance of the teams, including videos and event 
logs.  
 
Team audio data collection 
 
Two communication datasets were collected and 
analyzed during this effort.  In collaboration with the 
Fort Lewis Mission Support Training Facility, the 
project team collected audio, video and meta-data from 
the DARWARS Ambush! virtual environment convoy 
training activities. DARWARS Ambush! is a widely 
used game-based training system that has been 
integrated into training for many brigades prior to 
deployment in Iraq (Diller, Roberts, Blankenship & 
Nielson, 2004; Diller, Roberts & Wilmuth, 2005). In 
Ambush!, up to 50 Soldiers jointly practice battle drills 
and leadership during simulated convoy operations.  A 
second data set consisting of data from live mounted 
convoy STX lane training was collected at the National 
Training Center (NTC), Fort Irwin.  In collaboration 
with the NTC Observer/Controllers (O/Cs) we collected 
performance assessments of the datasets and recorded 
AARs and hot washes from the live training exercises. 
Both data collection efforts concentrated on platoon and 
squad-level teams performing convoy operations. 

 
We collected over 250 DARWARS Ambush! training 
missions on of approximately a half hour apiece 
including VOIP audio communication, and video and 
event logs  in some cases. At the NTC, we collected 
voice activated recordings of SINCGARS FM 
communications during STX lane training. Data was 
collected during rotations from January through June of 
2007. We recorded a total of 105 STX lane training 
missions, of which we selected 57 recordings that had 
acceptable quality audio, and training events of interest.  
Combined, this resulted in approximately 300 convoy 
training missions. 
 
SME performance rating collection 
 
Providing feedback on team performance requires the 
toolset to automatically associate performance metrics 
with communication streams.  Thus, the system 
typically requires one or more metrics of team 
performance, which can include objective measures of 
performance, such as threat eliminations or mission 
objectives completed, or subjective measures of 
performance, such as Subject Matter Experts’ (SME) 
ratings of aspects of performance including command 
and control and situation awareness.  In both the 
Ambush! and NTC convoy training contexts, evaluation 
occurred as part of the AAR process, so it was 
important that the performance metrics were drawn 
from the same task context, and developed in 
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conjunction with SMEs with extensive experience 
working with convoys.   
 
We developed five scales that captured the important 
dimensions of performance in this domain based on a 
mission essential task list (METL): command and 
control (C2), situation understanding (SA), adherence 
to standard operating procedures (SOP),  battle drills 
(CA) and general team performance (TEAM).  Seven 
SMEs rated the audio collected from Fort Lewis and 
NTC on these scales using a rating tool developed for 
the project that presented the audio in a visual interface 
to allow SMEs to select segments of audio and 
complete their ratings.  The SMEs were also asked to 
distinguish between critical events, defined as events 
that change the scope of battle, the commander’s plan 
or disrupt the operational tempo, and other training 
events in the communication.  Finally, SMEs conducted 
AARs for every mission they rated, providing sustains, 
improves and ratings on each scale for the entire 
mission. 
 
Before using SME ratings as a performance measure, it 
is important to assess how well the SMEs agreed with 
each other.  All SMEs were asked to rate a pair of 
missions selected for the purpose of collecting data to 
compute reliability and agreement. Intraclass 
correlations among the SMEs ranged from .76 to .85 
(p<.001) for average items suggesting excellent 
reliability. The intraclass correlations for single items 
ranged from .38 to .66 (p<.001). Exact agreement (two 
SMEs agree on the exact score) was calculated between 
every pair of SMEs, and average exact agreement 
ranged from 24% to 50%.  Average adjacent agreement 
(SMEs agree within one score point) ranged from 74% 
to 96%.  Two SMEs had extremely high agreement, 
with their adjacent agreement ranging from 93% to 
100%, and exact agreement ranging from 51% to 86%. 
The agreement among SMEs was impressive and 
indicates that the SME ratings are appropriate for 
computational modeling.  It also provides support that 
SMEs are able to accurately detect performance from 
communication. 
 

ANALYSES AND MODELING RESULTS 
 
The overall goal was to develop modeling techniques 
that could convert the speech stream into text and then 
accurately predict the SME performance ratings 
including both their rating scales and their indications 
of critical events during the training. A majority of the 
data modeling was conducted on a set of 72 training 
missions which included communication data, speech 
analysis variables, and SME-selected critical events and 
ratings of performance. 
 

The entire suite of techniques were integrated into a 
single, unified toolset.  Below we describe the 
development and testing of each component of the 
toolset.  The components include:  
1) Automated Speech Recognition to convert the 
communication into text for processing  
2) Speech signal feature analysis to assess stress 
3) Modeling to predict SME ratings of individual events 
4) Modeling to predict overall team performance 
5) Modeling to predict SME rated critical events  
 
Automated Speech Recognition 
 
The automatic speech recognition (ASR) component to 
converted the audio into text and to extracted some of 
the audio features using BBN Technologies’ AVOKE 
STX speech-to-text software system.  AVOKE 
transforms the raw, digitally recorded audio into a 
machine-readable text transcript for analysis. The 
software itself is language and domain independent and 
can be configured to run on different types of data. 
 
Training the ASR system 
Many ASR systems, including AVOKE, require 
preliminary training in the domain and acoustic 
environment of interest to produce reasonable 
recognition accuracy rates.  The ASR system used here 
is trained from accurately transcribed audio recordings 
sampled from the earliest set of collected mission 
audio.  The system inductively “learns” associations 
between features in the audio signal and the transcribed 
words that humans interpreted when they listened to 
and transcribed the audio signal.  This process of 
learned association results in a trained language model.  
When recognizing speech from new, unheard audio, the 
ASR software consults the language model to 
determine which words should be associated with, or 
recognized from, the audio features found in the new 
audio. 
 
The DARCAAT training data consisted of over 16 
hours of recorded communications from the Fort Lewis 
Ambush! environment collected prior to data collected 
at the NTC.  Of this, 2 hours were randomly selected 
and set aside for testing and optimization of the 
language model.  The training set was recorded on the 
same hardware used during similar task scenarios as 
those analyzed by the toolset. Humans transcribed 
training audio by hand and then an ASR model was 
built and tested 
 
ASR Accuracy and Evaluation 
In order to test the ASR recognition performance, the 
system was trained on 16 hours of command net 
utterances.  In Ambush! both the command net and 
intra-vehicle nets are recorded.  While valuable 



 
 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008 

2008 Paper No. 8180 Page 7 of 12 

information is contained on the vehicle net, for this 
analysis only the command net audio was used.  A set 
of 802 utterances were held out from the ASR training 
set and this set was then run through the trained ASR 
system and compared against the human transcribed 
transcript.  Word error rate was calculated as the sum of 
the insertions, deletions and substitution errors made by 
the ASR system divided by the total number of words.   
 
Overall, we found a word error rate of 33.7%.  These 
error rates are consistent with results found for Speech 
In Noisy Environments (SPINE) evaluation (see 
Schmidt-Nielsen et al., 2001).  Prior modeling work 
suggests that this range of error rate may decrease 
system prediction accuracy by about 10% from 
verbatim transcripts, which can still provide acceptable 
performance predictions (see Foltz, Laham & Derr, 
2003).  Thus, the resulting ASR system’s performance 
is well within the range of what cold be expected from 
an ASR system in this domain. 
 
There are further steps that can be taken to improve 
ASR performance.  Post-processing can enhance 
performance on ASR, including techniques such as 
weighting performance prediction scores by ASR 
confidence, recalculating error rates ignoring function 
word errors that do not affect measurement of the team 
performance context, and doing automated re-insertion 
of words based on LSA-based predicted context.  In 
addition, training could be done with greater amounts 
of command net data in order to improve ASR 
performance.  Thus, the resulting ASR system’s 
performance is within the range of what could be 
expected of an ASR system in this domain.  So while 
the ASR performance is certainly functional in the 
DARCAAT application, the above issues have 
reasonable solutions that could boost performance.   
The text-based output of the ASR system was then used 
in the subsequent performance modeling. 
 
Speech Feature Analysis 
 
Voice stress analysis examines the physiological 
changes that a person’s stress level causes including 
micro-muscle tremors (MMT) in the vocal tract 
muscles.  These MMTs can affect the energy and 
frequency of the speech signal, (see Lippold, 1971; 
Hanson et al., 2002).  Voice Stress analysis has been 
tested for deception detection with moderate success 
(see Haddad et al., 2002; Hopkins, Benincasa, Ratley, 
& Grieco, 2005), but not for predicting performance in 
teams.  While in deception detection a speaker is trying 
to hide effects of stress, in a team communication 
situation, stress does not always need to be hidden, and 
indeed may help to convey urgency, failures, or degree 
of criticality in a situation.  Thus, with appropriate 

analyses it may be possible to detect stress features in 
team communication. 
 
In our approach we used a number of statistical 
transformations of the speech signal in order to detect 
how likely it is that stress was present in a segment of 
team communication. Based on the analysis of the 
speech samples Hidden Markov Models (HMM) were 
used to categorize speech as excited or neutral. The 
primary features that were used in the models were 
measures of power, pitch, change over time, frequency 
components (FFT/MFCC), rate, duration and frequency 
of speech and their changes over time.   
 
Overall, the results show that an excitement 
classification algorithm can work with 87% accuracy 
for female voices and 81% accuracy for male voices.  
Of course, just being able to detect excitement in an 
utterance does not fully determine whether there is a 
critical event, or whether a team is performing poorly or 
well on a particular team performance metric.  
However, these results suggest that the method can 
provide accurate predictions that can be incorporated 
with the other methods described below to help detect 
critical events and help tune the performance models.   
 
Predicting Performance Metrics for Events 
 
During training, it is important to be able to determine 
how a team is doing at any point in time or in any 
particular event they are completing.  During the rating 
process, SMEs identified spans of time as “events” and 
then provided ratings on one or more of the metrics for 
that event.  Typical events ranged from a minute to five 
minutes in duration. Using a version of the final dataset 
divided up by events, we developed automated 
prediction models in which we trained the system on 
the communication of 80% of the events randomly 
chosen and then tested predictions on the remaining 
20% of the events.  In this testing, we used both text-
based variables (those based on analysis of the ASR 
transcripts, using semantic, syntactic and statistical text 
analyses), and variables based on the speech analysis 
(those analyzing the audio features of the 
communication during that event).  For the speech 
analysis variables, the variables represented either 
means or deviations in the speech variables across the 
whole event.  Stepwise regression was then used to 
select the best variables for each model. 
 
Table 1. shows the correlation between the model’s 
predicted rating and the SMEs ratings of the events 
using a model that combined text and speech variables.   
The correlations are all significant, and ranged from .36 
to .41.  These are slightly lower than the .38 to .66 
found in the intraclass correlations for single items for 
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the SMEs.  Nevertheless, they do show that the model 
can provide fairly accurate predictions of a team’s 
performance at the event level.  The speech and text-
based variables were also modeled separately.  
Generally, combining the speech and text variables 
improves these correlations by about .03.  This 
indicates that there is considerable colinearity between 
the speech and text variables, with similar information 
about team performance carried in both.  Overall, the 
results show that given a short segment of 
communication (e.g., a few minutes), the system can 
automatically generate a prediction of how that team is 
performing. 
 

Table 1. Correlation Between SME Ratings and 
Model Predictions Using Text and Speech-Based 

Variables Per Event  
 

Metric R N p value 
CA .37 572 <.001 
CC .41 838 <.001 
SA .41 833 <.001 
SOP .43 886 <.001 
TEAM .36 799 <.001 

 
 
Overall Team Performance Prediction 
 
Team performance was also modeled for entire 
missions, not just the separate training events, based on 
the ratings of the two SMEs with the highest agreement.  
In this approach the models predicted the SMEs’ 
overall ratings of the teams for each mission using the 
text-based variables.   
 
Because the unit of analysis for this model was the 
entire mission, and the agreement results for the SMEs 
were reported using events as the level of analysis, 
additional agreement measures were calculated based 
on the team performance ratings for entire missions 
rated by both of the SMEs.  Table 2 shows that the 
model’s predictions correlated well with the SME 
ratings, with correlations ranging from .70 to .81 across 
the five scales, only slightly lower than the correlations 
between the two SMEs.  Adjacent agreement between 
the SMEs and the model was also quite high, strongly 
supporting the use of the model in the toolset for 
assessing a team’s performance. 
 
These performance numbers match quite well those 
generated from the inter-rater reliability analysis.  The 
exact inter-rater reliability range  for SMEs was 33.3% 
to 66.6% which is quite similar to the combined range 
in Table 2 of 43.1% to 60.8% and the adjacent range 
from was 66.7% to 100.0% which is bettered here 

ranging from 86.3% to 100%.  The SME correlations 
were slightly better than the model’s with 3 in the .8 
range, one at .93 and the last at .59, while the 
correlations here are clustered mostly in the .7s.  
Nevertheless, these correlations are quite strong, 
showing that this analysis technique can account for 50 
to 69 percent of the variance of the overall team 
performance.  The results further show that there is 
more communication to analyze (e.g. whole missions), 
the techniques are able to provide more accurate 
predictions than for smaller amounts of communication, 
such as individual events.   This result holds true for the 
SMEs as well. 
 
Table 2. Prediction Performance between the model 

and SMEs for overall team performance 
 
Metric Correlation Exact 

agreement 
Adjacent 
agreement 

C2 0.71 43.1 86.3 
CA 0.74 47.1 90.2 
SA 0.83 54.9 100.0 
SOP 0.73 47.1 94.1 
TEAM 0.78 60.8 94.1 
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Figure 2. Comparison of SME Rating versus 

Predicted Rating  Overall Team Performance- 
Combined Fort Lewis and NTC missions 

 
Figure 2 shows an example of the fit between the SME 
ratings and the prediction model for the overall Team 
score. The SME ratings are on the y-axis and the model 
predicted values on the x-axis.  The area of the green 
circles along the diagonal represents exact agreement, 
the area of the yellow off-diagonal elements represents 
adjacent agreement and the area of the red circles 
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represents non-adjacent agreement.   The main point 
that the plots reveal is that the models predict quite well 
with most of the ratings at the exact and adjacent levels, 
and only a few small red circles of non-adjacency.  The 
overall implications of the results are that, based on the 
communication from a mission, the model can 
accurately determine how well the team performed. 
 
Critical Event Detection 
 
A critical event is anything that changes the scope of 
battle, the commander’s plan or disrupts the operational 
tempo.  Such changes are important in training since 
teams and/or commanders may not notice the change or 
may not respond appropriately to the change.  Thus, it 
is important to be able to identify critical events so as to 
be able to assess performance during that period of 
time.   One can then be able to later play back the 
events that lead up to the critical event to provide 
feedback in an AAR.   
 
A spectrum method was used to analyze the team 
communication data to predict SME-rated critical 
events.  A spectrum method uses windows or time 
slices as the unit of analysis; all utterances within a 
window are considered one instance or data point.  The 
windows were created by segmenting the 
communication by a constant interval of time.  
Analyses are then conducted moving across the 
windows of data.  In our experiments, overlapping 
windows were used to model the transitions in 
communications during a mission. 
 
The critical event detection model was trained on the 
text-based communication features found in critical 
events and then tested on a held-out communication 
data set. A model was developed that would detect 
whether any of the windows across an event were 
predicted to be critical events.  Over all the Fort Lewis 
and NTC missions, 81% of critical events were detected  
with a 22% false positive rate (ROC area under the 
curve was 95.6%). 
 
The approach shows that a significant number of the 
critical events can be automatically detected.  In 
addition, the sensitivity can be adjusted so that more 
critical events could be detected, although with higher 
levels of false alarms.  Varying the sensitivity may be 
useful in cases when a commander needs to be alerted 
to any kind of team anomaly as well as cases where 
sensitivity could be reduced so that teams or 
commanders are alerted only if the system is highly 
confident that a critical event is occurring. 
 

 
USING THE DARCAAT TOOLKIT FOR AARS 

 
As a demonstration of the application of the 
DARCAAT toolset, a prototype After Action Review 
application was developed that could be integrated into 
a training program to allow Observer/Controllers 
(O/Cs) and commanders to monitor teams and receive 
feedback on the team’s performance.  The application 
processes the incoming communication data from a 
team and then allows an O/C or commander to load any 
mission and provides immediate access to several 
critical pieces of information.  Through a series of 
graphical representations  of events in the mission, it 
enables efficient automatic augmentation of AARs by 
assisting the O/Cs in selecting the most appropriate 
segments of missions to illustrate training points.   
  
Using the automated models described in this paper, the 
application automatically rates a unit for each detected 
event on the five scales: command and control, 
situation understanding, use of standard operating 
procedures and battle drills. For each rating scale, the 
application selects appropriate training events that 
reflect the units’ range of performance from untrained, 
through practiced, to trained.  The application’s 
interface makes it easy to spot performance weaknesses 
at a glance and then to drill down to understand these 
weaknesses by listening to the relevant radio 
communication. The application also enables 
commanders to create a custom AAR by selecting 
events of interest and the associated radio 
communication and then adding their own comments.  
 
The application was designed to provide additional 
support to the AAR process by essentially extending an 
O/C’s reach automatically. Two SMEs reviewed the 
AAR application in order to provide us with feedback 
about its usefulness in supporting AARs, suggested 
improvements, and other possible applications.  Both 
SMEs thought the AAR application was valuable and 
would reduce the time required to prepare for an AAR, 
as well as increasing the scope of events that could be 
discussed. The SMEs also believed that the application 
could easily be extended to provide an O/C or  
commander support beyond a typical training mission 
AAR in order to track team improvement longitudinally 
over time and detect performance trends. Overall, 
application should allow O/Cs to be more efficient at 
locating training issues and spend more time interacting 
and monitoring trainees.  Additional details of the AAR 
application can be found in LaVoie et al., (submitted). 
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CONCLUSIONS 
 
The content and patterns of a team’s communication 
provide a window into performance and cognitive states 
of the individuals and the team as a whole.  By applying 
computational analyses to the communication stream, 
we can automatically derive team performance metrics.  
The DARCAAT program demonstrated the feasibility 
of using this approach for automatically detecting 
critical incidents, identifying performance changes, and 
evaluating team performance in both live and virtual 
training environments.  
 
The system uses a Statistical Natural Language-based 
intelligent software methodology for embedding 
automatic, continuous, and cumulative analysis of 
spoken interactions for individual and teams in both 
training and operational environments.  Starting with an 
incoming stream of free-form verbal communication, 
commercial grade ASR is applied, generating 
transcribed text and speech characteristics, such as 
stress, which can, in near real-time (within seconds), be 
analyzed using previously trained natural language 
models resulting in detailed measures of team 
characteristics and performance. This process provides 
a complete communications analysis pipeline, 
automatically converting team verbal communications 
into quantifiable performance measures.  
 
The toolkit allows the analysis and modeling of both 
objective and subjective performance metrics and is 
able to work with large amounts of communication 
data.  Indeed, because of its machine-learning 
foundation, it works more accurately with more data. 
The toolkit can automatically extract measures of 
performance by modeling how subject matter experts 
have rated similar communication in similar situations 
as well as modeling objective performance measures.   
Because the technology uses automated machine-
learning and natural language approaches, it does not 
require the time and resources of large amounts of 
previously hand-coded language analysis or task 
analysis.  This permits rapid and more cost-effective 
development and application of the technology for 
novel tasks and situations.   
 
Because this toolset permits low-cost development of 
team assessment systems, it can be integrated into 
training for teams, for assessing team and system 
performance, and for alerting teams and commanders of 
indications of potential problems before they occur.  
The tools can provide a range of alerts and feedback 
including: 

• near real-time assessment (within seconds) of 
individual and team performance; 

• indications of situation awareness, knowledge 
gaps and workload; 

• detection of critical events; 
• performance alarms; 
• generating automated After Action Reviews 

(AARs). 
 
Potential Applications and New Directions 
 
Computational communication analysis can be easily 
adapted to other military and commercial applications 
requiring monitoring and assessment of teams.  It 
allows almost instantaneous analysis and modeling of 
objective and subjective metrics of team performance  
for real,  complex communication data in networked 
teams. Because the models are automatically derived, 
the approach does not require large up front task 
analyses and instead simply models team performance 
in the same manner as SMEs.   
 
The toolset can be easily be integrated into systems to 
monitor and provide feedback for teams, in both 
training and operational venues.  Such systems can 
include applications to monitor teams, give feedback, 
visualize team information flow, alert commanders to 
potential problems before they occur, track leadership, 
as well as being integrated into adaptable training 
systems which can adjust training based on 
performance of the team.   
 
For example, there is potential to use the toolkit as a 
leadership training and development tool.  A strong 
leader should be able to evaluate the communication 
and provide feedback to their unit along many of the 
same  dimensions captured by the toolkit.  Using the 
toolkit, leaders can practice these skills and refine their 
own abilities to detect critical events and training 
moments to share with their units.  They can also build 
up more experience in assessing their unit’s strengths 
and weakness, improving their ability to conduct 
effective AARs and increasing the benefits of training.  
 
The overall approach to communication analysis and 
performance measurement further  aids in 
understanding the role of communication in complex 
human and system networks.  Results from applying the 
toolset to teams in real-world situations can help clarify 
how communication affects team performance, how 
performance is reflected through communication, and 
how to employ technology to monitor and improve 
teams.   
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