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Abstract

Current and emerging telecommunications services
are strongly dependent upon the Common Channel
Signaling Network (CCSN). Regulatory rulings have
accelerated the trend towards increased deployment,
utilization, and connectivity of CCSNsinthe U.S. In
this environment, engineering issues concerning the
performance, evolution, and reliability of the CCSN
are important. Accurate information about the
characteristics of CCSN traffic is needed for
engineering models, algorithms, and guidelines.

In this paper we report on our work analyzing actual
CCSN traffic data. The data consist of approximately
170 million signaling messages collected from a
variety of different working CCS subnetworks. We
have developed a software library that permits fast and
flexible analysis of the data despite its size and
complexity. Key findings from our analysis concern:
(2) the characteristics of both the telephone call arrival
process and the signaling message arrival process, (2)
the tail behavior of the cal holding time distribution,
and (3) the observed performance of the CCSN with
respect to a variety of performance and reliability
measurements.

1. Introduction

The Common Channel Signaling Network (CCSN) is
a packet network used for telephone signaling. The
Signaling System Number 7 (SS7) protocol governs
the exchange and processing of signaling information
on the CCSN. Among the higher level functions
performed by CCSN/SS7 are setting up and tearing
down phone calls, handing calls across signaling
network boundaries (e.g., from a Loca Exchange
Carrier (LEC) to an Interexchange Carrier (1C)),
monitoring circuits in the telephone network (i.e.,
circuits used to carry telephone traffic, as opposed to
signaling messages), and processing 800 calls and
caling card calls. The network consists of signaling

links (with 56 kilobits/'second bandwidth in each
direction) and nodes. Termina nodes include end
office switches (EOs), access tandems (ATs), and
Service Control Points (SCPs). The SCPs process
database queries and issue responses; e.g., an 800
number is queried at an SCP and the response directs
the routing of the 800 call. The non-terminal nodes
are packet switches called Signal Transfer Points
(STPs). Both STPs and SCPs are usually deployed in
mated pairs for redundancy. In LEC CCS networksin
the U.S, STPs are typically arranged in two
hierarchical layers — a lower layer of local STP pairs
serving (often) one Local Access and Transport Area
(LATA), and an upper layer consisting of one or two
pairs of regional STPs (R-STPs).

Regulatory rulings have accelerated the trend towards
increased deployment, utilization and connectivity of
CCSNs in the US. The Signding Point of
Interconnection (SPOI) ruling from Judge Greene's
court has led to rapid deployment of local STPs.
Federal Communications Commission (FCC) Docket
86-10 mandated that, by May 1, 1993, all 800 calls be
handled by database lookup at SCPs. (The SPOI
ruling is a 9/90 decision from Greene's court which
essentially requires many LECs to have an STP per
LATA. FCC Docket 86-10, adopted 8/1/91, is titled
"Provision of Access for 800 Service." It regulates the
provisioning of 800 Database Service on the CCSN
and sets performance requirements for 800 call setup
delay (see[1]).)

With the increased complexity in the deployed CCS
network and the increased demands and reliance on
the CCSN to support signaling-intensive services,
CCSN engineering issues gain in importance. CCSNs
need to be well designed, carefully managed, and
strategically evolved to ensure adequate performance
and quality of service at reasonable cost. The latter
need is of particular importance as new services are
brought on-line and gain in market penetration. For
example, engineering studies of the effects of



Advanced Intelligent Network (AIN) services and
Persona Communications Services (PCS) on an
existing CCSN are used to identify potential
performance bottlenecks and guide capacity expansion
decisions. In order to meet performance objectives
and to utilize the capital deployed in the CCSN
efficiently, engineering studies and guidelines should
be based on a solid foundation of knowledge about the
network and its traffic. In this paper, we describe the
collection and anaysis of SS7 data from actual
working CCS subnetworks of LECs. The insights
gained from our analyses provide accurate information
about the CCSN and its traffic and are currently being
used to vaidate and improve CCS engineering and
modeling.

The data we collect consist of individual time-stamped
SS7 messages on links monitored at STPs. |n total we
have collected approximately 170 million SS7
messages taking up about 8 gigabytes of disk space (in
binary). The size and complexity of our data require
sophisticated software and methodology for data
management, data translation and manipulation, and
data analysis, both computational and graphical. We
have developed a software library that permits
efficient and effective exploratory analysis of the data.
By exploratory analysis, we mean that we can
manipulate the data in a flexible fashion to explore
factors, such as time of day, system load, link type,
and type (vendor) of network element, on quantities of
interest, such as system response time, performance
measures, and delay components. The ability to do
this easily and quickly is necessary in order to support
high quality analyses which move beyond simple
sample moments towards a more complete exploration
of actual CCSN traffic. Our analyses range from
sophisticated investigations of the nature of the CCSN
traffic process, to empirical assessments of network
performance and descriptive summaries of message
types and frequencies.

The paper is organized as follows. In Section 2 we
discuss the data in more detail, including a brief
review of the data collection process, a description of
the key data sets, and a summary of our analysis
environment. In Section 3 we investigate the nature of
the CCSN traffic process. Our key findings concern
the nonhomogeneity of the traffic rate, the correlation
structure in the traffic process, and the heavy-tailed
nature of the underlying call holding time distribution
- s0 heavy-tailed, in fact, that the existence of afinite
variance is questionable. In Section 4 we summarize
our empirical findings for a variety of network
performance measures, including network delay for

calling card authorization, message retransmissions,
dual seizure (the simultaneous seizing of a circuit by
two network elements for two different telephone
cals), and anomalous calls and routing. Our data
collection and analysis efforts are on-going, and in
Section 5 we discuss some directions for future work.

2. CCSN Traffic Data at the SS7 M essage-L evel
2.1 Data Collection

The data discussed in this paper were collected on
working CCS subnetworks by a pair of Bellcore #2
NSTS devices. The NSTS devices are installed at
mated STPs and each one non-intrusively monitors a
maximum of 16 bi-directional SS7 signaling links.
The NSTS boxes are hooked up symmetrically so that
they are monitoring analogous links at each of the
mated STPs.

Figure 1. (Subnetwork 1)

Data collected on solid linksets by monitors located at

STP-1and STP-2.

Figure 1 illustrates a typical setup. To date, in various
subnetworks, we have monitored A-links (A for
"access") to EOs, A-linksto ATs, A-links to SCPs, B-
links (B for "bridge") to STPs at the same hierarchical
level, C-links (C for "cross') between mated STPs,
D-links (D for "diagona") to STPs at a different
hierarchical level, and D-linksto STPs of an IC.

The NSTS bhoxes each have disk space for about 128
megabytes (Meg) of data (Almost aways) the
duration of data collection is limited by this disk



space. Most of our data sets contain al data from all
links which were connected to the NSTS devices.
Depending on how many such links there were (8-16)
and how heavily trafficked they were, the data set may
span anywhere from an hour to afew days. In severa
cases we have collected data from only a subset of the
available links and/or collected only a subset of the
available messages so that we could get data sets
which span up to aweek.

The NSTS devices are time synchronized to allow the
integration of data collected across the mated pair of
STPs. We represent time on a 24 hour clock. The
boxes are typically configured to capture and time
stamp, with millisecond accuracy, all SS7 messages
on both directions of monitored links except for Fill In
Signal Units (FISUs). The NSTS strips out checksum
bytes and flag bytes. This means that the packet
length it records is approximately three bytes (two
checksums, one flag) shorter than what was actually
transmitted on the link. This three byte shortfall is
approximate both because an SS7 message may have
one or more flags, and because of zero hit insertion.

2.2 Data Sets

To date we have collected data from four different
CCS subnetworks. On the first two subnetworks we
collected data from A-links to EOs and to an AT, B-
links to a non-mated STP pair, and D-links to R-STPs.
In this paper we focus on data collected from the later
two subnetworks, which we will refer to as
"Subnetwork 1" and "Subnetwork 2'. We provide
additional information about these subnetworks
below.

In Subnetwork 1 we monitored A-links to EOs and to
an AT, C-links, and D-links to R-STPs and to STPs of
an IC. The EOs served both business and residential
customers. Between March 1993 and June 1993 about
15 data sets totaling approximately 80 million SS7
messages were collected. Data was collected on
Easter (4/11/93) and on Mother’'s Day (5/9/93). See
Figure 1 for apictoria representation of this network.

In Subnetwork 2 we monitored A-links to EOs and to
SCPs. The SCPs were handling both 800 call lookup
and calling card authorization (called LIDB or Line
Information Database lookup). Between December
1992 and February 1993 about 15 data sets totaling
approximately 70 million SS7 messages were
collected. Data was collected on New Year's Eve
(12/31/92).

Our data are diverse with respect to network element
type, in that we have hooked up the NSTS boxes to

different vendors STPs and we have monitored links
to different EO switches and ATs. The CCS
subnetworks we have monitored were not chosen by
any forma sampling scheme, instead, practica
concerns governed their selection. We are continuing
to collect data and expect to monitor two additional
subnetworks in 1993.

2.3 Data Analysis

As noted in the introduction, in uncompressed binary
form our data takes up about 8 gigabytes. ASCII
translations are considerably larger, up to an order of
magnitude bigger depending on the level of detall.
The size and complexity of our data sets pose
challenges for effective and efficient data anaysis. In
order to support both a wide variety of anayses and
sophisticated analyses, where warranted, it is
imperative that we be able to manipulate the data
flexibly and quickly.

We have developed a software library in C for
handling these data. The library contains programs
for checking data integrity (checking link numbering,
checking time stamps, detecting bad packets), for
trandlating the data to ASCIl and formatting it (a
variety of formats suitable for different message types
and different levels of detail are available), for
labeling the data (attaching labels for each NSTS box,
attaching labels for links and network elements), and
for sorting, and merging the data (sorting
chronologically, merging across individua data files
and across the two NSTS boxes). There are filter
programs which extract SS7 messages based on their
capture time, on the link on which they are
transmitted, on the direction which they are traveling,
on the sending network element or originating point
code (OPC), on the receiving network element or
destination point code (DPC), on their type and/or
subtype, on the NSTS box which captured them, and,
for those message types which refer directly to voice
circuits, on their circuit identification code (CIC).
There are programs to count message frequencies (by
type, priority, and/or length), to compute traffic loads
(with respect to a user-specified underlying time unit),
and to calculate inter-packet times. In addition, there
is software to identify messages which are part of the
same underlying process, e.g., t0o group messages
which are involved in the same telephone call, and to
match LIDB query messages with the corresponding
response messages.

Our software library is designed on the basic principle
of taking a stream of binary packets as input, doing
some selection and/or calculation, and writing a



stream of output. The output is frequently, but not
always, a (different) stream of binary packets. The
extensive use of binary files saves considerably on
disk space. Since the computing is quite fadt,
intermediate files can be quickly regenerated and need
not be saved (which aso saves on disk space).
Thoughtful use of basic software design principles
allowed us to create a computing environment to
support analysis of thisvery large collection of data.

3. Characterization of CCSN Traffic

Traditionally, CCSN traffic has been described by the
Poisson process model. It has been recognized (e.g.,
Skoog 1991) that this assumption is likely to be
invalid: even if call arrivals follow a Poisson process,
message arrivals to asignaling link will not be Poisson
because message arrivals for a particular cal are
correlated. SS7 message level data provides a unique
opportunity to compare actual CCSN traffic with
commonly made theoretical assumptions. In this
section we study (1) the call arrival process (i.e.,
Initial Address Messages (IAMs) only), (2) the
message arrival process (i.e., all SS7 messages), and
(3) the call holding time distribution (i.e., the time
between an Answer Message (ANM) and the end of
the call). To simplify the exposition, we will illustrate
our results amost exclusively with data collected on
Subnetwork 2 from 1/20/93 to 1/24/93. This four day
data collection period began on a Wednesday night
and ended around 12:00 on the following Sunday.
This data set has average link utilizations of around
5-10%. We will use the shorthand notation
"Subnetwork 2 - 1/20/93" to denote this data set, and
we will focus on the data from Thursday 1/21/93. Itis
critical to note, however, that al the results presented
have been checked and verified using three additional
data sources. Duffy, Mclntosh, Rosenstein and
Willinger (1993a) present an analogous analysis for
data from Friday from this same data set; other work
which has not appeared in print anayzed data
collected from Subnetwork 1 on 4/1/93 (with average
link utilizations of more than 20%) and data collected
on 1/1/91 (with average link utilizations less than 5%).
Thus, our findings are consistent across different days,
a range of loads, and in different network
configurations.

3.1 Call Arrivalsasa Time-lnhomogeneous
Poisson Process

Figure 2 plots the number of call arrivals (i.e., IAMS)
per 10 seconds (sec) on one channel of an A-link to an
EO for the Subnetwork 2 - 1/20/93 data. Clearly
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Figure 2. Cdl arrivals (IAM messages) per
10 sec for a 4 day-long measurement period
starting at 22:23 on 1/20/93 (Subnetwork 2).

visible are the high traffic periods during the days
(with noticeable decreases in traffic around 12:00) and
the low traffic periods during the nights. Note also the
clear distinction between weekday and weekend
traffic. A more detailed plot of the call arrival process
over an 8.3 hour time period from Thursday 9:30 am
to 5:50 pm is given in Figure 3. The underlying call
arrival rate can be estimated by a non-parametric
smoothing method (Cleveland (1979)) implemented in
the S dtatistics language (Becker, Chambers, and
Wilks (1988)). The white line in Figure 3 shows the
estimated call arrival rate, which is clearly time-
inhomogeneous. In fact, it is obvious that any attempt
to extract a stationary busy hour for call arrivals - a
standard quantity in telecommunications engineering -
is going to meet with limited success as there is no
real "flat spot" in the estimated call arrival rate.

The time-inhomogeneity or non-stationarity of the call
arrival process, if not properly accounted for, can lead
to invalid conclusions about the time dynamics of the
process. Recall that a Poisson process has
independent counts in non-overlapping time intervals.
Hence, if a (stationary) Poisson process model is a
reasonable fit for the data in Figure 3, then the
autocorrelations of lag 1 and greater for this data
should all be identically zero. Figure 4(a) plots the
empirical autocorrelations based on the raw data and
ignoring the non-stationarity. Clearly, this plot would
rule out a Poisson model. In contrast, Figure 4(b)
plots the empirical autocorrelations based on the
detrended data; i.e., after subtracting the estimated call
arrival rate shown in Figure 3 by the white line. The
empirical autocorrelations in Figure 4(b) hover around
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Figure 3. Call arrivals (IAM messages) per
10 sec during the high traffic period starting
at 9:30 and ending at 17:50 on 1/21/93 and
corresponding empirical arrival rate process
(white line).

zero, which istypical for count process data generated
from an underlying sequence of i.i.d. (independent
and identically distributed) random variables. In fact,
Figure 4(b) "looks like" Figure 4(c), and Figure 4(c) is
a plot of empirical autocorrelations obtained from a
sequences of 3000 i.i.d. normal random variables.
Figure 4(b) (and (c)) provides strong evidence for the
independence of call arrivals in non-overlapping time
intervals. Analyses not presented here show that the
Poisson distribution, with a parameter that is a
function of the time-varying arrival rate, gives a
reasonable fit to the observed margina distribution.
Thus, the call arrival process on the signaling link is
very well-described by a time-inhomogeneous Poisson
process.

The previous paragraph showed that a time
inhomogeneous Poisson process is a valid model for
call arrivals over an 8.3 hour high traffic period, and it
showed that the independence of the process cannot be
established without carefully accounting for non-
stationarity. We have analyzed other high traffic
periods during the day, medium traffic periods during
the early morning and the late evening, and low traffic
periods during the night with the same results;, namely,
a time-inhomogeneous Poisson model fits very well.
We have analyzed short time periods (e.g., "busy
hours") with the same, but less drastic results; namely,
the non-stationarity must be properly accounted for in
order to show the independence of the process in
non-overlapping intervals. Obviously the magnitude
of this latter phenomenon is a function of the "degree
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Figure 4 (a—(c). (@ Empirica

autocorrelations for the number of |IAM
messages per 10 sec during the high traffic
period starting at 9:30 and ending at 17:50 on
1/21/93; (b) corresponding empirical
autocorrelations for the detrended time series
(i.e., subtracting the empirical call arrival rate
(see Figure 3)); (c) empirical autocorrelations
from a sequence of 3000 i.i.d. normal random
variables.

of non-stationarity. In addition, Duffy, Mclntosh,
Rosenstein and Willinger (1993b) considered the call
arrival process for 800 calls and showed that a time-
inhomogeneous Poisson process is a reasonable model
there as well.

The engineering implications of the non-stationarity of
call arrivals remain largely open. For example, Davis,
Massey, and Whitt (1992) studied a time
inhomogeneous call arrival process on a trunk of the



underlying physical telephone network (i.e., not the
signaling network) and showed that the (time-
dependent) call blocking probability can be strongly
effected by the behavior of the service time
distribution beyond its mean. Analogous questions
concerning the implications of time-inhomogeneous
cal arrivals on signaling network performance
measures have, to our knowledge, not yet been
studied.

3.2 Message Arrivals. Deviations from Poisson
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Figure 5. Message arrivals (al SS7

messages) per 1 sec during the high traffic
period starting at 9:30 and ending at 17:50 on
1/21/93 and corresponding empirical arrival
rate process (white line).

When message arrivals, rather than call arrivals, to a
signaling link are considered, the independence
assumption for counts during non-overlapping
intervals is likely to be violated because of
correlations among arival times for messages
belonging to the same call. In this subsection, we
address the question of whether these correlations are
statistically significant. Figure 5 plots the number of
SS7 messages per sec from Subnetwork 2 - 1/20/93
and for the same time period and the same link and
channel as Figure 3. As before, we use non-
parametric smoothing to estimate the arrival rate
(white line in Figure 5). We plot the empirical
autocorrelations based on the detrended data in Figure
6. In contrast to the call arrival process (i.e., Figure
4(b)), however, the autocorrelations for the detrended
datain Figure 6 do not "look like" those based oni.i.d.
data (i.e.,, Figure 4(c)), but rather show very small
positive autocorrel ations which decay slowly.
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Figure 6. Empirical autocorrelations for the
number of all SS7 messages during the high
traffic period starting at 9:30 and ending at
17:50 on 1/21/93, detrended by subtracting
the empirical call arrival rate (see Figure 5).

We can check whether the smal positive
autocorrelations observed in Figure 6 are statistically
significant with a graphical statistical test caled the
variance-time plot (Cox, 1984). Note here that we are
not assessing the significance of the individual
autocorrelations but their significance when summed
over all lags. To calculate the variance-time plot,
consider a given "block size' m and create a new
count process by averaging the original process over
non-overlapping time intervals of length m. The
variance-time plot is a plot, on log-log scale, of the
variance of the new count process as a function of the
block size m. If a count process has autocorrelations
that decay exponentially fast, or if it is independent,
then the variance-time plot will have an asymptotic
slope of -1. Asymptotic slopes larger than -1 mean
that the autocorrelations decay more slowly than
exponential (e.g., like a power).

The variance-time plot for the detrended counts of
SS7 messages per sec (Figure 5) is shown in Figure 7.
The dark plotted circles denote the stable region of the
asymptotic slope; the dotted reference line has slope
-1. The asymptotic slope is about -0.55; it is clearly
different from -1 and suggests that the
autocorrelations decay like a power with exponent
-0.55. It is important to note that this autocorrelation
structure not only can not be modeled with a Poisson
process, but it also can not be modeled with any of the
Poisson-based models (e.g., batched Poisson,
interrupted Poisson, Markov-modulated Poisson). To
account for the slow decay of the autocorrelations,
so-called long-range dependent models must be used.
Long-range dependent models have been successfully
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Figure 7. Variancetime plot of the

detrended time series of the number of al
SS7 messages (see Figure 5). The asymptotic
dope (determined using the "brushed" points)
is clearly larger than the slope -1.0 of the
dotted reference line and is readily estimated
to be about -0.55.

used to model other types of packet traffic (e.g.,
variable bit rate video traffic, Ethernet LAN traffic) in
recent studies (Beran, Sherman, Tagqu, and Willinger
(1992), Erramilli and Willinger (1993), Leland,
Tagqu, Wilson, and Willinger (1993)).

One result of both the time-inhomogeneity and the
dowly decaying correlations in SS7 message traffic
data, is that the traffic is "bursty". A practica
implication of this burstiness is that measurements of
peak observed traffic rates are highly sensitive to the
underlying measurement interval. For example, in our
data we find that estimates of peak traffic rate in SS7
messages/sec decrease 25-35% when the underlying
time interval increases from one sec to five sec. This
sensitivity is relevant for operations systems which
monitor CCSlinks.

3.3 TheHeavy-Tailed Nature of the Call Holding
Time Distribution

A key cause of correlations in SS7 message arrivals is
the dependence among messages that are involved in
the same call. In the simplest situation, five messages
are associated with a completed phone call - three
messages to set the call up, and two to tear it down.
The time between set up and tear down, i.e., between
the third set-up message and the first tear-down
message, is the conversation time or the call holding
time (CHT). Traditionally, CHT was approximated by
an exponential distribution (e.g., Erlang 1918).
However, it has long been recognized that the

exponential approximation seriously underestimates
the actual number of very long calls (e.g., data cals
that last for many hours). Recent work has taken a
more formal look at models for CHT. For example,
Bolotin (1993) studied a year’s worth of complete
local originating call records for hundreds of
individual residential lines in one geographical area,
and found that the CHT distribution is well described
by a mixture of lognormal distributions. Our
discussion here is not focused on fitting a particular
model to the observed CHT distribution. Instead we
identify general properties exhibited by the actual
CHTs. Since we have CHTSs for millions of calls, we
are able to provide very sensitive assessments of the
observed CHT distribution.

As alluded to in the previous paragraph, the majority
of CHTs are short (several minutes), but there are a
significant number of very long calls. The presence of
these very long cals implies that the underlying
distribution has heavy tails. Formally, a probability
distribution function F is called heavy-tailed if 1-F (x)
decays like a negative power of x; i.e,
1-F(x)Bx™® , as x -~ o (a>0). Examples of
such distributions are the lognormal, Weibull, and
Pareto. Notethat if a < 2, then F has infinite variance
(e.g., Pareto with Parameter 1< a < 2), and if a < 1,
then F has infinite mean.

Figure 8(a) plots the histogram of the logarithm (base
10) of CHT (in sec) for calls that started during the
high traffic period shown in Figure 3. It is critical that
the selected sample of calls not be truncated; i.e., that
we look at all callsthat started in a given time period,
not those that started and ended in a given time period.
There were 296,840 such calls, and their durations
ranged from 0.01 sec to 24 hours (!).

Let F(x) denote the empirical distribution function of
the CHT. We can assess tail behavior by plotting, on
the log-log scale, 1 -F(x) vs x. If the underlying
distribution is heavy-tailed, in the sense defined above,
then we see an approximately straight line for large x-
values, with slope of —a. Indeed, Figure 8(b) exhibits
such structure as shown with the plotted solid circles.
The slope estimate (obtained by eyeballing a straight
line through these points) is about -2.0.

A more rigorous method for estimating a is provided
in Hill (1975). To describe Hill’s estimate, we use the
notation (X1, X, ..., X) for the observed CHTSs, and
we let X1, X5 n, ..y X n denote the corresponding
order statistics. Hill’sestimate a is given by
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Figure 8(c) plots Hill's estimate vs k, where the k
largest order statistics are used to calculate the Hill
estimate according to the above formula. Note in
particular that the estimate is quite stable, with an a-
value between 2.0 and 2.4 for k-values ranging from 1
to about 7000. (i.e, using up to about 2% of the
cals). Hill's estimate agrees with our earlier
conclusion drawn from Figure 8(b). The empirical
CHT distribution is heavy-tailed and, in fact, a the

borderline of having an infinite variance.

The above analysis, namely, the heavy-tailed nature of
the CHT and the question of infinite variance, has
been validated with other high traffic data. In low
traffic data, the CHT distribution is also heavy-tailed
and the Hill estimate hovers around 1, raising the
question of an infinite mean. One practica
implication of the heavy-tailed nature of the CHT is
the instability of sample moments. For example,
calculations of sample means and standard deviations
as a function of sample size vary widely even for
"large" samples ranging from a few thousands to
hundreds of thousands of calls.

4. Network Performance

Our data permit empirical analyses of a variety of
network performance measurements including delays
or processing times at network elements, network
integrity and reliability quantities such as packet
retransmissions and routing errors, and customer
service measurements. An example of the latter is
dual seizure in which atrunk is seized simultaneously
by two network elements for two different calls. This
causes customer delay and/or difficulty in making
cals. In the paragraphs below we briefly discuss our
findings regarding some of these network performance
measurements.

In data collected from Subnetwork 2 between
12/31/92 and 2/8/93 we observed a routing anomaly
between two EOs. All traffic from the first EO to the
second EO was routed through one of the two mated
STPs; traffic in the reverse direction was properly
balanced across the two mated STPs. The error has
been traced to corruption of certain information in the
first EO switch, and has led to an audit of EO switches
of that kind.

In Subnetwork 2 we collected data on A-links to SCPs
handling LIDB queries. Matching the query with the
response allows us to caculate the LIDB query-
response delay. Figure 9 plots the observed
distribution of LIDB query-response delays based on
data collected on 1/19/93 from 8:41 to 13:29. A tota
of 159702 query-response delays are represented. The
key features of this distribution are a sharp mode at
500 msec, a curved left shoulder of times less than the
mode, a soping right shoulder of times greater than
the mode, and a cluster of very long times around 1.5
sec (1500 msec). The mean delay is 478 msec and the
standard deviation is 114 msec. The median delay is
492 msec; 90% of the delays are less than 588 msec;
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Figure9. LIDB query-response delays.
99% of the delays are less than 736 msec.

We have calculated the number of retransmitted SS7
messages in our data. For nine data sets collected
between 9/8/92 and 4/11/93, the total number of
retransmissions was 2079. There were roughly 45.7
million messages total in these data sets, for an overall
retransmission rate of 4.5x107°. However, this overall
rate is highly misleading. All but 10 to 20 of the
retransmissions occur on two channels, or directions,
of two links. One of these is one channel of aC-link in
Subnetwork 1 which have errored packet rates of 3%
on 3/31/93 and of 2.5% on 4/11/93. The second isone
channdl of an A-link to an EO in Subnetwork 2 which
has over 1000 retransmissions in data collected on
2/4/93 aone. It is our observation, then, that
individual channels of links are either noisy or not.

There is considerable interest in understanding actual
bit error characteristics; e.g., What fraction of bit
errors occurs in bursts? How long are the bursts? and
so on. We can not study these questions directly for
bit errors, but we can study them indirectly through
our data on packet retransmissions. More detailed
investigations of the 1000-odd retransmissions on the
channel of the A-link on 2/4/93 showed no tendency
for retransmitted packets to bunch up in time (in fact,
one second time intervals essentially had either zero or
one retransmissions), indicating that packet
retransmissions are not bursty. This, in turn, has some
implications for possible bit error characteristics.

Our data permit determination of when dua seizure
has occurred. For seven data sets collected between
9/8/92 and 4/11/93, we calculated the percentage of
call attempts that involved dual seizure separately for
each link. Altogether, we had 20 different empirical
frequencies of dua seizure for different kinds of links

on different dates in different subnetworks. The
striking observation about these empirical frequencies
is their wide range. In cases where dua seizure
occurred, the observed frequency varies from 0.65%
to 0.001%, a range of more than two orders of
magnitude. There were also links that had no cases of
dual seizure. There are no obvious correlations
between frequency of dual seizure and switch type,
and correlations with traffic load are not consistent.
For example, data collected on Subnetwork 2 from
1/24/93 through 2/2/93, continuously, included two
switches of the same type. The first switch had
641881 call attempts with a dual seizure frequency of
0.09%; the second switch had 728034 call attempts
with a dual seizure frequency of 0.0093%. We are
currently investigating two factors which may affect
dual seizure rates. point specific traffic loads relative
to the number of available trunks, and the presence of
in-band signaling over part of acircuit path.

We have identified a few telephone calls which
involve anywhere from severa hundred to several
thousand SS7 messages. Given that an average call
involves 5-7 SS7 messages to set up and tear down,
the identified cals have quite excessive signaling
loads. The worst call of this type that we have seen to
date lasted for 31 minutes and had a total of 5976 SS7
messages, including 2985 pairs of Suspend Messages
(SUS) and Resume Messages (RES). An SUS is sent
when the called party hangs up. An RESis sent if the
called party picks up again quickly (6-30 sec after
hanging up), and resumes the call. Asfar as we know
the protocol does not limit the number of allowable
SUS, RES pairs; nonetheless, calls such as these are
clearly pathological. One hypothesis we are currently
exploring is whether hardware glitches at the trunk
level could cause this sort of behavior.

5. Future Work

As mentioned briefly in Section 2, our collection and
analysis of CCSN traffic is an on-going activity, and
we expect to monitor at two additional subnetworks in
1993. The data we will collect will permit us to
benchmark the effects of national 800 Database on
CCS networks at the LEC level, and to assess the
signaling impacts of new services (AIN and/or PCS;
we will monitor subnetworks involved in trials for
these services).

Our findings on the properties of the CCSN traffic
process raise important and challenging questions for
engineering and modeling. For example: How
sensitive are standard network delay models to time-



inhomogeneity in the arrival process? Can we
propose modified or aternative traffic rate
measurements which are both practical to implement
and stable to calculate?

Our empirical assessments of network delays can be
used to benchmark engineering algorithms. In Duffy,
Mclntosh, Rosenstein and Willinger (1993b) we
present results on 800 query-response delay. These
results have been compared to a queueing-network
approach for characterizing this delay, and the
comparison raises some interesting questions. We
look forward to additional work in validating and
improving engineering models for network element
processing times and delays.
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